
PERFORMANCE EVALUATION OF NoSQL DATABASES

ON STREAMING DATA

DANI MFUNGO

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF DODOMA

OCTOBER, 2017

PERFORMANCE EVALUATION OF NoSQL DATABASES

ON STREAMING DATA

By

Dani Mfungo

A Dissertation submitted in partial fulfillment of the requirements for the

degree of Master of Science in Computer Science of The University of Dodoma.

The University of Dodoma

October, 2017

i

CERTIFICATION

The undersigned certify that they have read and hereby recommend for the

acceptance by The University of Dodoma dissertation entitled, “Performance

evaluation of NoSQL Databases on Streaming Data” in partial fulfillment of the

requirements for award of Master‟s degree of Science in Computer Science at The

University of Dodoma.

……………………………………..

PROF. JUSTINIAN ANATORY

(SUPERVISOR)

……………………………………

Dr. MASOUD MASOUD

(SUPERVISOR)

Date…………………………………….

ii

DECLARATION

AND

COPYRIGHT

I, Dani Mfungo, declare that this dissertation is my own original work and that is has

not been presented and will not presented to any University or institution, for a

similar or any other degree award.

Signature………………………………….

No part of this thesis may be reproduced, stored in any retrieval system, or

transmitted in any form or by any means without prior written permission of the

author or The University of Dodoma.

iii

ACKNOWLEDGEMENTS

Many people have contributed to this research in one way or another. Without the

support, encouragement and help, that researcher received from various people, it

would have not been possible to conduct this research. Researcher would like to take

this opportunity to thank those people.

First and foremost, Researcher would like to thank his Supervisors‟, Prof. Justinian

Anatory and Masoud Masoud (PhD) for their support and guidance since the

beginning of this thesis to the end. Dr. Masoud, who is very knowledgeable and

deep understanding in the field of database, gave me valuable advices in advance

thus I am very grateful to have him as my supervisor.

Researcher, do also appreciate prof. Mohammed Guller from University of

California for his kindness and time to help whenever possible on Spark Streaming

technology.

Also, researcher would like to say thanks to the whole group of Cassandra-HBase-

Spark from Gitter for their support and contribution, without them this study could

have been tough.

Next but not last, researcher would like to thank his classmate; Mr. Barongo Justus,

Mr. Sila Lwendo, Mr. Erick Bunyara, Mr. Sutte Masuha and Mr. Kinto Arusha for

their collaboration during the whole period of studies at The University of Dodoma.

Finally, researcher would like to thank all the academic staff from The University of

Dodoma for their help since he arrived at the University.

iv

DEDICATION

Special dedication to my family – my parents Mr. Elias Mfungo and Mrs. Zena

Athmani for their kindness support, to my sisters, Ms. Zifa Mfungo and Ms. Aneth

Mfungo for accompanied me through every effort on fulfillment of this thesis.

Finally, this thesis is dedicated to my brothers‟ Mr. Jesse Mfungo and Mr. Evance

Mfungo for their constant encouragement to accomplish the thesis work.

v

ABSTRACT

The main purpose of this dissertation was to evaluate the performance of Cassandra

and HBase NoSQL Databases, that present at Column-oriented category on handling

streaming data. The data set used for this evaluation were constructed with the help

of the Twitter Streaming API. The environment which used to evaluate the

performance of Cassandra and HBase on Streaming Data was Apache Spark with its

ability to plot streaming data from source using Spark-R.

Several studies have been considered, and came out with evaluation metrics. Among

the metrics found include computation time, memory used, read and write bytes, and

CPU usage.

The benchmark performance of the two column family NoSQL Databases

(Cassandra and HBase) were completed. The researcher, benchmark 4 different

implementations by setting the time interval of 5seconds, 10 seconds, 5 minutes and

10 minutes for 10 iterations with 20 days.

The performance on two NoSQL databases were evaluated in terms of computation

time where throughput and latency time were the metrics. Cassandra seem to have

the overall good performance in write operation when the streaming workload

increase compared to HBase while HBase show the overall low performance in

computation for having high average latencies time particularly in writing operation.

To have accuracy result, each test results were averaging to came out with average

results.

vi

TABLE OF CONTENTS

CERTIFICATION .. i

DECLARATION AND COPYRIGHT .. ii

ACKNOWLEDGEMENTS .. iii

DEDICATION .. iv

ABSTRACT ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST APPENDICES .. xii

LIST OF ABBREVIATION ... xiii

CHAPTER ONE: INTRODUCTION .. 1

1.0 Introduction .. 1

1.1 Background .. 1

1.1.1 Relational Databases ... 1

1.1.2 NoSQL Databases ... 2

1.1.2.1 Categories of NoSQL Databases .. 2

1.1.2.1.1 Key -value ... 2

1.1.2.1.2 Document Database .. 3

1.1.2.1.3 Column Family ... 3

1.1.2.1.4 Graph Database ... 4

1.1.2.2 Apache Cassandra .. 5

1.1.2.3 Apache HBase .. 6

1.1.3 Apache Spark .. 7

1.1.3.1 Apache Spark Streaming .. 10

1.1.4 Statement of The Problem ... 11

1.1.5 Objective ... 13

1.1.5.1 Main Objective ... 13

1.1.5.2 Specific Objective .. 13

1.1.6 Research questions .. 13

1.1.7 Purpose of the study .. 13

1.1.8 Significance of The Study ... 14

vii

1.1.9 The structure of the thesis ... 14

CHAPTER TWO ... 16

LITERATURE REVIEW... 16

2.0 Introduction .. 16

2.1 Conceptual definition ... 16

2.2 Related Work ... 17

2.2.1 Tools for Ingestion .. 17

2.2.2 Data Analytic Layer .. 18

2.2.3 NoSQL Evaluation .. 19

2.2.4 Cassandra Vs HBase Evaluation ... 19

2.3 Research Gap ... 22

CHAPTER THREE: METHODOLOGY .. 23

3.0 Introduction .. 23

3.1 Research setting ... 23

3.2 Research Approach .. 24

3.3 Research Design ... 25

3.4 Research method and Data Collection ... 25

3.4.1 Literature review ... 25

3.4.2 Streaming Simulator.. 26

3.4.3 Experimental setup environment... 27

3.4.3.1 IntelliJ IDEA setup ... 27

3.4.3.2 Apache Spark Configurations .. 28

3.4.3.3 Scala Installation .. 29

3.4.3.4 Twitter Streaming API Setup ... 30

3.4.3.5 Database Configurations .. 32

3.4.3.5.1 Cassandra .. 33

3.4.3.5.2 Apache HBase ... 35

3.4.6.2.1 HBase installation ... 36

3.4.4 Dataset ... 37

3.4.5 Data Size ... 37

3.4.6 Data received Rate .. 38

3.4.7 Experimental Scenario .. 38

3.4.7.1 How it works .. 40

viii

3.5. Data processing and Analysis ... 42

3.5.1 Experimental analysis ... 42

3.5.1.1 Benchmark Results Data .. 42

3.5.1.1.1 Average benchmark results, triggered after every 5 seconds 42

3.5.1.1.2 Average benchmark results, triggered after every 10 seconds 43

3.5.1.1.3 Average benchmark results, triggered after every 5 minutes 43

3.5.1.1.4 Average benchmark results, triggered after every 10 minutes 44

3.5.1.1.5 Read (100%) only workload, triggered after every 5 seconds 44

3.5.1.1.6 Write (100%) only workload, triggered after every 5 seconds 45

3.5.1.1.7 Read (100%) only workload, triggered after every 10 seconds 45

3.5.1.1.8 Write (100%) only workload, triggered after every 10 seconds 46

3.5.2.2.9 Read (100%) only workload, triggered after every 5 minutes 47

3.5.2.2.10 Write (100%) only workload, triggered after every 5minutes 48

3.5.2.2.11 Read (100%) only workload, triggered after every 10 minutes 49

3.6 Ethical Consideration ... 50

3.7 External Validity .. 50

3.8 Economic Planning and Costs .. 51

3.8.1 Planning .. 51

3.8.2 Costs .. 52

3.8.2.1 Development Costs .. 52

3.8.2.2 Infrastructure Costs .. 52

CHAPTER FOUR: FINDINGS AND DISCUSSION ... 54

4.0 Introduction .. 54

4.1 Finding and discussion after Documents Analysis .. 54

4.2 Finding and discussion after Experimental Research study 55

4.3 Data received Rate ... 55

4.4 Benchmark results .. 56

CHAPTER FIVE: SUMMARY, CONCLUSION AND FUTURE WORK 64

5.0 Introduction .. 64

5.1 Summary of the research objectives .. 64

5.2 Conclusions .. 65

5.3 Future Work ... 67

ix

REFERENCES ... 68

APPENDICES .. 74

x

LIST OF TABLES

Table 1. 1: Column-family database model ... 4

Table 2. 1: The comparison between Cassandra and HBase 21

Table 3. 1: Objective to appropriate Approaches... 23

Table 3. 2: Metrics evaluations .. 26

Table 3. 3: Cassandra Configuration Details ... 33

Table 3. 4: Load Records-Average evaluation after 5seconds 43

Table 3. 5: Load Records-Average evaluation after 10 seconds 43

Table 3. 6: Load Records-Average evaluation after 10 minutes 44

Table 3. 7: Load Records-Average evaluation after 5 seconds 44

Table 3. 8: Load Records-Average evaluation after 5 seconds 45

Table 3. 9: Load Records-Average evaluation after 10 seconds 46

Table 3. 10: Load Records-Average evaluation after 10 seconds 47

Table 3. 11: Load Records-Average evaluation after 5 minutes 48

Table 3. 12: Load Records-Average evaluation after 5 minutes 49

Table 3. 13: Load Records-Average evaluation after 10 minutes 50

Table 3. 14: Development costs ... 52

xi

LIST OF FIGURES

Figure 1. 1: Graph NoSQL Database ... 5

Figure 1. 2: Apache Cassandra Architecture.. 6

Figure 1. 3: Apache HBase Architecture ... 7

Figure 1. 4: Apache Sparks and its plugins ... 8

Figure 1. 5: Internal architecture of Apache Spark .. 8

Figure 1. 6: Schema of map-reduce ... 9

Figure 1. 7: Transformation of DStream .. 10

Figure 1. 8: DStream represent multiple RDD... 11

Figure 3. 1: Strong Experiment Design.. 25

Figure 3. 2: Streaming data from different source to persistence storage 27

Figure 3. 3: OpenJDK installation ... 28

Figure 3. 4: Apache Spark setup .. 29

Figure 3. 5: Twitter credential information .. 31

Figure 3. 6: Spark Streaming model for processing the Twitter Stream 32

Figure 3. 7: Nodetool utility ... 34

Figure 3. 8: Starting HBase via Command tool ... 36

Figure 3. 9: Data Structure of tweets ... 37

Figure 3. 10: Simulation scenario for Cassandra ... 39

Figure 3. 11: Simulation scenario for HBase ... 39

Figure 4. 1: Evaluation metrics .. 55

Figure 4. 2: Receiving rate at interval of 5seconds for 11 minutes............................ 56

Figure 4. 3: Read (100%) only workload: 5 seconds for 20 days 57

Figure 4. 4: Write (100%) only workload: every 5 seconds for 20 days 58

Figure 4. 5: Read (100%) only workload: every 10 seconds for 20 days 58

Figure 4. 6: Write (100%) only workload: every 10 seconds for 20 days 59

Figure 4. 7: Read (100%) only workload: every 5minutes for 20 days 60

Figure 4. 8: Read (100%) only workload: every 5minutes for 20 days 61

Figure 4. 9: Write (100%) only workload: every 10 minutes for 20 days 62

Figure 4. 10: Average Latency time after every 10 minutes in 10 iterations for 20

days ... 63

Figure 4. 11: Throughput after every 10 minutes in 10 iterations for 20 days 63

xii

LIST APPENDICES

Appendix I: External Examiner Corrections ... 74

xiii

LIST OF ABBREVIATION

ACID Atomicity, Consistency, Isolation and Durability

API Application Program Interface

BASE Basically Available, soft state, Eventual Consistency

CQL Cassandra Query language

CPU Central Processing Unit

HDFS Hadoop Distributed File System

HTML Hypertext Markup Language

NoSQL Not only Structured Query Language

RDBMS Relational Database Management System

SQL Structured Query Language

UDOM University of DODOMA

YCSB Yahoo! Cloud Service Benchmark

1

CHAPTER ONE

INTRODUCTION

1.0 Introduction

Data is the crucial thing. We cannot avoid speaking of data while we need it in our

daily life. Data can be stored in form of clustering or classification, supervised or

unsupervised, and when processed, an important decision could be made from it. The

relational database has been the vital choice for many professional when it comes to

data management because of its ability on maintain ACID properties. As the

technologies changes, data management professionals can store structured, semi-

structured and unstructured data in a collective ways of data management tools called

NoSQL. There are technologies which help to measure the flood velocity of data

from different sources, Hadoop and Map-Reduce Technique work best in distributed

system where it processes data in terms of batch system. Apache Storm and Apache

Spark are new processing data specifically for streaming data.

1.1 Background

1.1.1 Relational Databases

These represent objects in tables which consist of tuples and fields. Relational

database management systems are set of programs special for managing data and

programs that are used to manipulate data and most of them consist of query

language, data dictionary, memory management programs and storage

programs(Sullivan, 2015). SQL is query language of all relational databases which

perform both defining data structure and manipulation of data operations such as

insert, update, delete even reading of data. Relational databases are faced by different

challenge such as low volumes of read and write operations, low latency response

times and low availability tendency (Sullivan, 2015) which has been solved by the

2

originated of NoSQL Database (Lakshman, Melkote, Liang, & Mayuram, 2016;

Sullivan, 2015).

1.1.2 NoSQL Databases

Are designed to run in multiple server although this is not a necessary requirement

(Tolerance, 2009). The benchmark motivations of NoSQL databases including the

need for availability, scalability (Scale-Up), schema-less, simplicity and cost

control(Sullivan, 2015). There are four categories of NoSQL Databases namely Key-

Values, Document, Column-Family and Graph databases(Eric Redmond, 2012;

Tolerance, 2009). Relational databases follow ACID properties, NOSQL databases

follow the BASE properties (Sadalage & Fowler, 2012). All the NoSQL database

must guarantee the CAP theorem where the relationship among availability,

Consistency and persistence tolerance are stated (Eric Redmond, 2012; Lynch,

2014), the CAP theorem state that: “any networked shared-data system can have at

most two of three desirable properties which are consistency (C), high availability

(A) of that data (for updates) and tolerance to network partitions(P)” (Brewer, 2012).

Among major player of NoSQL Database includes, Google BigTable, HBase,

Hypertable, Amazon Dynamo, Voldemort, Cassandra, Redis, CouchDB, MongoDB

(Gokavarapu, 2010). The basic reasons why I chose this kind of database is because

of its properties of schema-less and its use simple mechanism to store data in binary

form.

1.1.2.1 Categories of NoSQL Databases

1.1.2.1.1 Key -value

The key value type basically, uses a hash table with a unique key point to a particular

item of data (Makris & Tserpes, 2016) . The performance of key value database has

3

great impact due to its ability of caching mechanism that accompany the mappings. It

has been designed for storing, retrieving and managing the data structure and

associative arrays. It has schema-less properties and the value of data is opaque.

Value in key-value (Sharma & Tim, 2015) databases are accessed by a key and the

stored value can be images, binaries, videos, HTML, strings and other formats.

Key-value database has advantage on flexibility of data model, because data store

does not enforce any structure on the data. Also, the architecture of the key-value

favors high performance than relational databases because there is no need to

perform join, union and lock. It does not need to search through every column to

search for particular item because of using a key to search the location of the object.

1.1.2.1.2 Document Database

Document NoSQL databases are schema-less and flexible that can allow any type of

document to load without understanding the inside structure of the document, thus no

need of the prior knowledge of the data structure and the value in it (Sharma & Tim,

2015). The flexibility makes this kind of database mostly used in Agile development

process. Some common standard for encoding used by document databases includes

JSON, BSON and XML (Eric Redmond, 2012).

1.1.2.1.3 Column Family

Column-oriented NoSQL database (Sadalage & Fowler, 2012), are similar to

relational database although are quietly difference. Data are stored in cells grouped in

a column rather than as rows of data. Logically its columns are grouped into a family

of similar column. Single column families can contain multiple column within. Thus,

referencing during read and write always use column and not rows (Datastax, 2015).

4

Some basic concept to understand about column family are column families, super

column and column.

 Column families – show how data stored in disk. Can contain multiple

supple columns and column. All data with the same properties in a single

column are grouped together in the same file.

 A super column is like a dictionary which contains other columns but no

other super columns.

 A column is a column which contains timestamp, name of the value and

value itself. The timestamp is what differentiate it with key/value databases.

Table 1. 1: Column-family database model

COLUMN FAMILY

Column Name 1 Column Name 2 Column Name 2

Value 1a: timestamp1a Value 2a: timestamp2a Value 3a: timestamp3a

Value 2b: timestamp2b Value 2b: timestamp2b Value 3b: timestamp3b

Value 1c: timestamp1c Value 2c: timestamp2c Value 3c: timestamp3c

Source: Sullivan, 2015

1.1.2.1.4 Graph Database

In Graph NoSQL Database, (Fiannaca & Huang, 2015; Sadalage & Fowler, 2012)

focus is defining data with relation to other data present on database. Its format is

quite different from that of SQL or Column-Family. Its structure use edge, nodes and

properties of each. Graph database are good in data mining, monitoring of epidemic

disease and finding relationship among objects (Eric Redmond, 2012). We simply

say, they use nodes and edges to store and represent data, with the help of edge there

is a relationship among nodes with defined properties.

5

Figure 1. 1: Graph NoSQL Database

Source: Researcher data, 2017

Example of Graph database includes Neo4j, MeshBase, GiraffeDB

1.1.2.2 Apache Cassandra

Cassandra (Barata, 2015) is an open source distributed data store under Apache

Software foundation which combine Google‟s BigTable data model and Amazon‟s

Dynamo distributed system technologies.

It was first developed by Facebook in 2008 and in 2009 became one of Apache

Incubator project (Barata, 2015). It has decentralized model architecture with no

single point of failure. Cassandra support replication which improve the reliability of

data, helps the performance by spreading the workload across multiple replicas, the

update request is always more challengeable than write request due to updates

problems in replicas of data. HBase also has Scalability properties which can enable

6

additional of new hardware and node without failure. It come with its own language

called Cassandra Query language (CQL) and other language drivers for other

programming language such as python, java and Scala. Cassandra also support

Apache Pig, Apache Storm, Apache Spark and Hadoop Map. One advantage of

Cassandra is the support of all fata format from structured, semi-structured and

unstructured data.

Figure 1. 2: Apache Cassandra Architecture

Source: Eric Redmond, 2012

1.1.2.3 Apache HBase

HBase, (Gokavarapu, 2010) is an open source running on top of Hadoop

Distributed file system (HDFS) which become the Apache project in 2010. It is a

column-oriented database (Gokavarapu, 2010) which based on Google‟s BigTable.

To access HBase you can use command line or Scala API.

HBase contains different components but the two of the components are much

prominent to developers, namely Master server and region Servers. Master Server

used to assign region to the region servers while handling of load balance and

7

maintenance of schema changes and Region Severs are responsible for handling

request particularly read and write requests.

Most companies dealing with Big Data problems use HBase. Facebook has been

using HBase as a new messaging infrastructure (Eric Redmond, 2012), Stumbleupon

use it for real-time data storage and analytics while Twitter use it for storing,

monitoring the performance of data and data generation. Other companies using

HBase includes Meetup, Ning, Yahoo!, and eBay (Eric Redmond, 2012).

Figure 1. 3: Apache HBase Architecture

Source : “Apache HBase – Apache HBase
TM

 Home,” 2017

1.1.3 Apache Spark

Apache Spark is an open source framework which developed at the university of

Berkley and in 2013 entered the apache incubator. It has been designed for resillent

distributed dataset (RDD) (Apache Spark, 2015).

8

Figure 1. 4: Apache Sparks and its plugins

Source : “Databricks - Making Big Data Simple,” 2017

Apache Spark has been built to communicate with languages like java, python, Scala

and R. It can communicate with Apache Kafka, Twitter API, parquest, HBase,

Cassandra, MongoDB and used for data streams, Machine learning, graphX and

SparkSQL (Apache Spark, 2015).

Figure 1. 5: Internal architecture of Apache Spark

Source : Apache spark, 2015

Spark has been developed using Scala Language thus it is compatible with any JVM

language. As the compiled code analyzed, the resillent datasets are generated in

9

some amount. Simply the RDD can be termed as the carrying objects for data and

operations.

Spark context allow the data from outside to be able to connect to the cluster

manager. Also, Spark context area is responsible for creating instance of data stream

and converting size batch data to units.

1. Map Reduce is a technique developed by Google for increasing computation

process in big data problems (Yang, Dasdan, Hsiao, & Parker, 2007). The

concept behind is by distributing the operation by map them over several

clusters and reduce the data structure. By doing this makes an expensive

operation to be with high parallizable.

Figure 1. 6: Schema of map-reduce

Source- Researcher data

2. RDD - Resillent Distributed Data, Strict structure has been one of the

disadvantage of map reduce pattern, due to ability of each dataset to do the

same operation. To address this problem, apache Spark solve it by

introducing resillent distributed data structure where it encapsulates chucks

10

of data and transform into a lightweight data structure (Apache Spark, 2015).

The RDD are backbone for Apache Spark since they help the data stream to

be discretized by Spark streaming for processed

1.1.3.1 Apache Spark Streaming

Apache Spark was developed for many purpose, specifically for implementation of

RDD (Guller, 2015). This framework can be used for streaming data, machine

learning and graph processor.

Discretization is a primary abstraction that is provided by Spark streaming when

working with data streams. When Apache Spark needs to handle real time data, it

needs to split them into batches. Apache Spark implement discretized stream as a

sequence of RDD. The interface for processing data stream is called Stream (discrete

Stream)

Figure 1. 7: Transformation of DStream

Source: Apache Spark, 2015

Computing; Always the start method begins stream computation. DStream

represent all the stream in batches (Apache Spark, 2015) which are handled as RDD

in Apache Spark.

11

Figure 1. 8: DStream represent multiple RDD

Source: Researcher data

Several application benefit from dealing with streaming data as soon as it arrives

(Karau & Konwinski, 2015). For example, the application which track number of

coordinates as a mouth as it moving on web page, training machine learning model,

tracking of the movement of tyres as the car move. Thus, decision makers in their

business have to use Streaming API for analysis.

1.1.4 Statement of The Problem

“The lack of clear NoSQL database evaluation for the case of Data Streaming create

a fear, anxiety and mislead in decision making for business success and for software

developer during data analytics.”

Continuous flowing of data generated from different sources with different varieties

are transferred in a form of the small size of kilobytes, typically these data are

generated by web applications, e-commerce purchase, social networks information‟s,

customers from financial trading centers, on line gaming playing. Since these data

are generated continuously, they can be processed and used for analytics, thus the

analytics information from streaming data can help people who work with data in

their everyday and every time work for prediction of customers, sales trends and

12

weather forecasting, make better decision for their company, hospital, institution and

organization to increase performance.

However, the dominant relational databases management systems which usually use

SQL language are not designed for querying rapid and continuously flowing data (Li

& Manoharan, 2013). These data normally come in different varieties such as

structured, semi-structure and unstructured (Babcock & Babu, 2002; Dissertation,

2006; Terry, Goldberg, Nichols, & Oki, 1992). NoSQL are designed to overcome the

limitation of RDBMS by allowing data access based on predefined access primitive

with its features such as schema-less, scale-up (Li & Manoharan, 2013), to handle

both streaming data and real time data (Gupta, Gupta, & Mohania, 2012).

Several studies have been conducted to evaluate the performance of NoSQL database

on streaming data by using Hadoop. Example, a study conducted by (Aniceto et al.,

2015) indicates that Cassandra has better performance of about 95% compared to

other NoSQL Databases. Also, (Datastax, 2015; Gandini & Gribaudo, 2014) use

Hadoop technology to compare HBase, MongoDB, Neo4j and Cassandra.

Despite of the benefits observed in apache Spark on streaming data, a study is hardly

found that have evaluated the performance of NoSQL databases by integrating it

with Spark framework. In response to the matter of streaming data, this study

intended to evaluate the performance of NoSQL Database on streaming data by

incorporate Cassandra and HBase as NoSQL Databases, with Apache Spark as data

link and continuous data from twitter social network.

13

1.1.5 Objective

1.1.5.1 Main Objective

The main objective of this study is to evaluate the performance of NoSQL databases

(Cassandra and HBase) from columnar family against streaming data.

1.1.5.2 Specific Objective

1. To identify performance metrics for evaluating Cassandra and HBase

databases on Streaming Data.

2. To assessing the performance of Cassandra and HBase on Streaming data

using Apache Spark

3. To propose which of the two NoSQL database is most suitable for streaming

Data using Spark.

1.1.6 Research questions

1. What are the performance metrics for evaluating Cassandra and HBase on

Streaming data?

2. How does Cassandra and HBase perform on streaming data using Apache

Spark?

3. What is the appropriate NoSQL database for streaming data with Apache

Spark.

1.1.7 Purpose of the study

The purpose of this experimental study was to report on the performance analysis

methodology and results after evaluation by looking the correlation between NoSQL

Databases (Cassandra and HBase) with continuously Streaming Data from social

network information‟s generated by “twitter streaming API” with incorporation of

Apache Spark. NoSQL Databases (Not only SQL) are defined as the class of

14

Database Management System (DBMS) that do not follow all the rules of a relational

DBMS and cannot use ancient SQL to query data, it is usually used in very larger

databases which are explicit at risk of performance downside caused by limitation of

RDBMS. Additionally, in this study streaming data was defined as data that

generated endlessly by thousands of data sources which usually send in the data

records at the same time and in tiny size (order of kilobytes) – information from

social networks.

1.1.8 Significance of The Study

The research might give info on the issue of NoSQL Databases technologies notably

on the properties, categories, and characteristics. Further, this study would even be a

review on the NoSQL information technologies gift. The study would be helpful to

the Academician and Students as this study enhance the information on NoSQL

information, Apache Spark, and Apache Storm technologies. Furthermore, this study

would be beneficial to the system administrators and software developers as the

study would provide necessary information regarding the performance on NoSQL

databases on Streaming Data, additionally facilitate analyst on choosing the most

effective suit technology for fast result on data analytics throughout decision making.

Also, this study would offer a baseline info regarding with performance of NoSQL

database particularly those from columnar family on streaming data using Apache

Spark and Apache Storm technologies.

1.1.9 The structure of the thesis

The rest of the thesis is organized in the following chronological order; chapter two

gave enough details on what others have said about N0SQL databases evaluation,

Apache Spark, ingestion tools, data analytics layers and Cassandra vs HBase

15

evaluation. Chapter three covered the methodology part (experimental set-up,

implementation, analysis and planning and cost). Chapter four is about findings and

conclusion and the last chapter explained about summary, conclusion and future

work on the field of NoSQL Database evaluation.

16

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

A literature review discusses revealed info in a very explicit discipline at intervals of

a period. It provides a new interpretation of previous material or mix new with

previous interpretations. Depending on matters, the literature review could valuate

the supply and recommendation of reader on the foremost pertinent or relevant. The

focus of a literature review is to summarize and synthesize the arguments and ideas

of others while not adding new contributions.

In this chapter, critical review and summary of various concepts related to the

streaming data and database as well as various empirical literatures which concerned

with evaluating NoSQL Database in terms of throughput, latency and Scalability.

The chapter categories sub-themes as ingestion tools for those tools used for data

captured, an integrated layer as data link layer, NoSQL database evaluation, the

evaluation of HBase and Apache Cassandra as our focus of this study, and lastly is

the research gap found after reading several literatures. By review different studies,

the objective (1) answered from this chapter.

2.1 Conceptual definition

The following definition used in this study as it written unless defined otherwise by

the researcher.

Apache Spark; is an open-source cluster computing framework for big data

processing. It has emerged as the next generation big data processing engine,

overtaking Hadoop MapReduce computation strategies of big data. (Shanahan &

Dai, 2015)

17

Spark Streaming is an extension of the core Spark API; it allows integration of real-

time data from disparate event streams (Ranjan, 2014). But in this study streaming

data was defined as data that generated endlessly by thousands of tweets which

usually send in the data records via Spark at the same time and in tiny size (order of

kilobytes) which are captured after every 5 seconds, 10 seconds, 5 minutes and 10

minutes.

Apache Cassandra is an open source distributed database system that is designed for

storing and managing large amounts of data across commodity servers. Can serve

both real-time operational data store and streaming data (Apache Software

Foundation).

Apache HBase is a column-oriented key/value data store built to run on top of the

Hadoop Distributed File System (HDFS) (Apache, 2013).

Hadoop is an open source, Java-based programming framework that supports the

processing and storage of extremely large data sets in a distributed computing

environment (Apache Software Foundation)

2.2 Related Work

2.2.1 Tools for Ingestion

Gathering of information has been a vital part for any developing and developed

business companies, institution and organizations. Different tools have been used to

capture a real-time streaming and offline data. Wireshark (“Wireshark · Go Deep.,”

2017) tool has been doing tremendous in capturing data from live network and file

on disk. Metasploit (Holik & Horalek, 2015; “Penetration Testing Software |

Metasploit,” 2017) used to capture data for security purpose specifically for research

18

and penetration test of the live or simulation test (Holik & Horalek, 2015; Nicoll,

2011) while snort used for intrusion detection for live network(Roesch, 1999). While

most of the evaluation of NoSQL Databases have been done using Yahoo Cloud

service Benchmark (YCSB) (Barata, 2014; Cooper, 2010, Gandini & Gribaudo,

2014, 2014; Sergey Bushik, 2012; Veronika Abramova, 2014) as their data ingestion

tool based on cloud computing services. In this study, a twitter sentimental analysis

mechanism for data ingestion from twitter social network (Agarwal, 2011a, 2011b;

Go, Huang, & Bhayani, 2009) was used. Researcher decided to use twitter because it

has become the most social network for people to express opinions and views on

different sectors which generate the burst amount of volume of data per time. The

study conducted by (Adams & McCorkindale, 2013; Wang, Can, Kazemzadeh, Bar,

& Narayanan, 2012) use twitter real-time sentimental analysis for U.S presidential

election.

2.2.2 Data Analytic Layer

An integrated layer for ingestion streams, storage data, user interface and deep

analytics is a crucial layer which use different technologies. IBM Streams (“IBM

Streams,” 2016) is a platforms analytics tools used to correlate and analyze

information which comes from data streams sources. (Nabi, Wagle, & Bouillet,

2015) conducted an integration of IBM infosphere with YARN on NoSQL Database

tried to capture streaming data, (Yulevich, Pyasik, & Gorelik, 2012) use its in

detection of motion data. (Biem et al., 2010; Gedik & Andrade, 2012) use infosphere

on streaming data. (Taylor, 2012) specify that a data link layer “Oracle Real Time

Decision” can improve the quality of organization decision. The most useful Data

Analytics layer used for evaluation of NoSQL Database is Hadoop (White, 2012)

which provide a Scalable and reliable platform for both storage and analysis. Hadoop

19

enable several processing model such as YARN (Kumar Vavilapalli et al., 2013) and

MapReduce (Eric Redmond, 2012) which access data by batch processing.

Although, Hadoop is most useful for evaluation of streaming data (Gokavarapu,

2010) but it take a lot of time during data process, thus, in this study, the researcher

was using an open source platform from Apache foundation which are developed

specifically for real time data processing capability, called Apache Spark.

2.2.3 NoSQL Evaluation

A study performed (Datastax, 2015) on NoSQL Databases when evaluation

CoachBase, MongoDB, HBase and Cassandra and results showed that Cassandra

was better in terms of performance compared to the rest. (Klein, 2015) a case study

of NoSQL Database evaluation among Cassandra, MongoDB and Riak resulted on

Cassandra to have best throughput performance with highest latency while

MongoDB was lower in performance throughput. Other authors who studied about

evaluation of NoSQL Database include (Fiannaca & Huang, 2015; Gandini &

Gribaudo, 2014; Kalakanti, 2015; Sharma & Tim, 2015; Sukhdev, n.d.; Veronika

Abramova, 2014). Although the evaluation of NoSQL database has been conducted

with many research or academician, but this study found a performance comparison

between Cassandra and HBase on Streaming Data using special distributed

integrated data link for streaming data namely Apache Spark.

2.2.4 Cassandra Vs HBase Evaluation

Cassandra was developed by Facebook as an open source distributed database

management system in july,2008 (Cassandra, 2016) and later become part of Apache

Software foundation in march,2009 (Cassandra, 2016). Apache HBase (“Apache

HBase – Apache HBase
TM

 Home,” 2017) is a distributed NoSQL database build on

20

top of Hadoop. Unlike relational databases, Cassandra store data in structured, semi-

structured and unstructured format (Barata, 2015) without affecting the performance

of database. Cassandra is Scalable, high available and fast (Barata, 2015) in query

execution. Compared to MongoDB and PostgreSQL, Cassandra was indicated to be

the best database (Fiannaca & Huang, 2015) where their solutions rely on RAM and

CPU cores. The study conducted in 2015 towards the major NoSQL Databases

(Cassandra, CouchBase, HBase and MongoDB) (Datastax, 2015), Apache Cassandra

was the best in both throughput by workload and Average Latency by workload.

(Gokavarapu & Qiu, n.d.) compare HBase and Cassandra in terms of language

written, license, protocol, tradeoff and usage, table 1 (Ayush, 2014) indicate some of

the comparison between Cassandra and HBase. It was observed that HBase was

better on Optimized Batching compared to Cassandra by 8% while Cassandra has

higher latency by 12% (Kalakanti, 2015). In this study, researcher compared their

throughput performance on handling streaming data.

21

Table 2. 1: The comparison between Cassandra and HBase

Parameter HBase Cassandra

Database type Column Oriented Data

Store

Column oriented

Data store

Development language Java Java

License Open Source Open source

Works on Operating system Linux, Unix, Windows BSD, Linux, OS X,

Windows

Database schema Used Schema-less Schema-Less

Predefined data types Yes Yes

Secondary indexes No Restricted

Structure Query language No No

CAP Theorem Consistency, Availability Availability,Partition

Tolerance

Application Programming

Interface

Java API, REST HTTP

API, Thrift

Proprietary protocol

Consistency Immediate Immediate and

eventual

Mainly used for Read Write

Apache Spark Through use of Zookeeper

and Hadoop

Datastax

Single Field Indexes Yes Yes

Multi key index No No

Partitioning Dynamic Sharding

Rebalancing of Nodes in

Failure

Automatic Automatic

Compression of data Yes yes

Language used for

programming

Java,Python and Scala Java, Python,and

Scala

Triggers No No

Foreign keys No No

JOIN Concept No No

Transaction No No

22

Concurrency Yes Yes

Durability Yes Yes

Several metrics has been used to evaluate database system includes throughput,

latencies and response time (Datastax, 2015) , RAM and CPU usage (Fiannaca &

Huang, 2015). This research based on checking the I/O performance of the database

where throughput and latency used as testing metrics.

2.3 Research Gap

Nowadays, NoSQL database has shown to have more advantages of use compared to

RDBMS (Li & Manoharan, 2013), this indicates that, NoSQL databases should be

adapted and used in several sectors. While the continuous flowing of data is essential

to be measured and stored in NoSQL databases, several studies reviewed show that

the data link technology used are not designed specifically for measuring real-time

and continuous flowing of data (Eric Redmond, 2012; Kumar Vavilapalli et al.,

2013; White, 2012). Question of whether the evaluation of NoSQL database using

Hadoop technology have limited effect on streaming data has been elaborated. In this

dissertation, researcher decided to evaluate the performance of NoSQL databases

(Cassandra and HBase) on streaming data by means of Apache Spark as data link

layer.

23

CHAPTER THREE

METHODOLOGY

3.0 Introduction

It is important to know the environmental details where the experiment has been

conducted to came out with the valid result. The chapter, gives details about Study

setting, Design research, Approach used, Planning and Cost of the study, experiment

setup, and implementation. This chapter evaluated the metrics chosen in chapter 2

thus objective (1) and (2) considered to be accomplished.

Table 3. 1: Objective to appropriate Approaches

Questions Objectives Approach

What are the performance

metrics for evaluating

Cassandra and HBase on

Streaming data?

To identify performance metrics

for evaluating Cassandra and

HBase databases on Streaming

Data.

Literature review

(Document

analysis)

How does Cassandra and

HBase perform on

streaming data using

Apache Spark?

To assessing the performance of

Cassandra and HBase on

Streaming data using Apache

Spark

experiment

What is the appropriate

NoSQL database for

streaming data with

Apache Spark.

To propose which of the two

NoSQL database is most

suitable for streaming Data

using Spark.

experiment

3.1 Research setting

Study has been carried out at Computer Laboratory found at Ruaha Catholic

University. Ruaha Catholic University is a private institution which provide

academic service to the public. Provision of academic service and presence of the

Computer laboratory was one of the reason why the researcher chosen that

24

institution. In this study, researcher chose Ubuntu 17.04 as operating system for

platform. All the processes have been tested on 64-bit Ubuntu 17.04 OS and may

differ on another Linux kernel-based OS. Other tools include; Apache Spark Version

1.6 pre-built for Apache Hadoop 2.6, Scala language version 2.10.5, Apache

Cassandra Version 2.0.6, Apache HBase version 1.2.6, Java-8-openjdk.

3.2 Research Approach

This study involved generation and computation of massive volume of data which

came from Twitter social network to a standalone platform. To deal with these

continuous flow of data, a quantitative research approach as suggested by (Creswell,

2014; L. Christensen, 2015) when deals with numerical and countable data was used.

Since Quantitative approach are used to find the relationship between variables and

constants, this brings a reasonable means for the same approach to be used in this

study when evaluating the performance of two databases.

Since, the study involved the calculation and finding the average of each experiment

and control group, the descriptive statistical approach as part of quantitative

approach was used. The descriptive statistics was used, and numerical data presented

in both numeric and graphs using frequency distribution and scatter graph.

Frequency distribution used to show the uniqueness of data rank values and the

frequencies of both databases used for evaluations. Also, researcher used scatter

graph as evaluator mechanism to bring a clear graphical representation of the

relationship between databases on handling streaming data. Only when mentioned a

researcher used a line graph to show statistical significant between the databases.

25

3.3 Research Design

In this study, the strong experimental design has used. The reason behind was due to

giving a researcher control over the situations in terms of databases selected, in terms

of which gets treatment condition and in terms of the amount of treatment condition

that each database received. This can be classified as having controlled experiments

in the researcher management by having confidence in the relations observed

between the independent (throughput and latency) and dependent variable (iteration

time).

Figure 3. 1: Strong Experiment Design

Source: Researcher data

3.4 Research method and Data Collection

3.4.1 Literature review

To address question (1) several studies were reviewed to determine the performance

metrics for HBase and Apache Cassandra databases. Recent and relevant studies

from different journals, papers, thesis, articles have been passed through for a

purpose of metrics searching. Some of the key terms observed includes SQL,

26

NoSQL, HBase, Cassandra, performance evaluation, performance comparison and

database ranking.

The following table indicated number of performance metrics as used by different

researcher to evaluate database

Table 3. 2: Metrics evaluations

METRICS SQL DATABASES NoSQL DATABASES

 MySQL Postgre

SQL

SQL

Server

Cassandra MongoDB HBase

Throughput 13 12 10 15 17 15

Latency 14 14 17 21 19 23

Response

time

9 8 46 12 16 11

CPU usage 15 16 15 5 7 4

Source: Researcher data

3.4.2 Streaming Simulator

To answer Question (2) and (3), data must be collected from streaming simulation.

To help simulation of streaming data from Twitter Streaming API, Apache Spark

was used, since it has mechanism to deals with streaming data. (Maarala &

Rautiainen, 2015). Data source was from Twitter Social Network with Twitter API

(Benhardus & Kalita, 2013) due to its ability to generate huge amount of data at a

time (Bifet & Frank, 2010). Captured data was stored in either Cassandra or HBase

database using Apache Spark data link layer and analyzed.

27

Figure 3. 2: Streaming data from different source to persistence storage

(Guller, 2015)

Several machine can be used to simulate experiment but for the case of this study,

computer has been used to simulator machine (Jacobs, 1993) which can perform and

manage scientist experiments.

3.4.3 Experimental setup environment

All testing performed on standalone platform which was reasonable for testing

NoSQL databases. To minimize the effect of CPU, Memory usage and I/O

variability, researcher performed each iteration on 20 successively days. The tests

conducted on a machine with 8 GB RAM, 2 CPU Cores, a single volume of 500 GB

of HDD local storage. Environmental tools used for coding was IntelliJ IDEA 3.0

Community edition, Apache Spark 1.6.0 as a data link layer, Scala 2.11.5 as a

programming language, twitter Streaming API as congestion layer and Cassandra

3.10, HBase 0.92.0 as database storage.

3.4.3.1 IntelliJ IDEA setup

Intellij IDEA Community was chosen as a platform tools for connecting different

packages, software‟s, gateways, libraries by using Scala language. The minimum

28

requirements which was considered for installing Intellij IDEA was 8GB

RAM,500GB hard disk and 1024 * 768 screen resolution.

IntelliJ IDEA Community was downloaded from its website and unpacked to the

/opt directory

sudo tar xf -*.tar.gz -C /opt/

to run Intellij Idea for the first time always switch to /bin directory cd opt/-*/bin and

run from there by type idea.sh

3.4.3.2 Apache Spark Configurations

Spark processes run under Java Virtual Machine (JVM) thus java is pre-installed

before Apache Spark in the machine. The following command are used to install

Java in Ubuntu machine

$sudo add-apt-repository ppa:webupd8team/java

$sudo apt-get update

Figure 3. 3: OpenJDK installation

Source: Researcher data, 2017

Because Apache Spark is written in Scala language, the Scala should be installed

first. Thus, the researcher installed Scala version 2.10.5 and set its folder to the opt

directory. The following are commands used to install Scala in ubuntu 16.04.

note: In order to install Spark, we need to make sure, that Java 7+ and Scala 2.10.x

is up and running

29

3.4.3.3 Scala Installation

sudo apt-get remove Scala-library Scala

wget http://www.Scala-lang.org/files/archive/Scala-2.10.5.deb

sudo dpkg -i Scala-2.11.5.deb

sudo apt-get update

sudo apt-get install Scala

After install Scala, researcher set up the its path to the /opt directory with the

following command

export SCALA_HOME=/opt/Scala/Scala-2.10.5

export PATH=$SCALA_HOME/bin:$PATH

After download Apache Spark, it must be extracted to the preferred directory, where

in this project the /opt directory was chosen throughout. It is important to set the

path for Spark directory

Figure 3. 4: Apache Spark setup

Source: Research data

30

3.4.3.4 Twitter Streaming API Setup

Researcher use Twitter Streaming API since it provides, RESTful and Streaming

data API endpoint in order to retrieve published data. REST API used to obtain

specific search and posted new tweets while the Twitter Streaming API was used to

retrieve every new tweet as soon as it is published. This process has been chosen for

security purpose as (Benhardus & Kalita, 2013; Morstatter, Pfeffer, Liu, & Carley,

2013) suggested.

Twitter4j library was used in this experiment to connect with twitter streaming API

where streams were accessed via HTTP POST request, by filtering user topic and

English language. The Authentication methods (OAuth) must be used to provide

authorized access to twitter API. Twiiter4j was implemented in Scala by using

Maven as shown below.

<!-- https://mvnrepository.com/artifact/org.twitter4j/twitter4j-core -->

<dependency>

<groupId>org.twitter4j</groupId>

<artifactId>twitter4j-core</artifactId>

<version>4.0.6</version>

</dependency>

<!-- https://mvnrepository.com/artifact/org.twitter4j/twitter4j-stream -->

<dependency>

<groupId>org.twitter4j</groupId>

<artifactId>twitter4j-stream</artifactId>

<version>4.0.6</version>

</dependency>

To prevent misuse of information from twitter, there are some credential information

about the user which are taken and must be included in the application program in

order to receiver streaming of data from twitter.

31

Figure 3. 5: Twitter credential information

Source: Researcher data, 2017

32

The architecture of Spark Streaming Configured for this experiment process is seen

in figure 3.6.

Figure 3. 6: Spark Streaming model for processing the Twitter Stream

Source: Researcher data, 2017

Tweets were received and temporary stored inside the local queue, the writing

operation is triggered by considering the setup time interval. Time was set at interval

of 5sec, 10sec, 5min and 10 minutes. Once the time end, it automatically writes the

tweet from queue to the database. Although the interval may seem as batch process

by wrote the tweet at once, but the time is very minimum for batching operation also

to observe the writing speed of each database in small amount of time interval and

overcome the fast writing as much speed as the tweets received at fast rate.

3.4.3.5 Database Configurations

The new version of both Apache Cassandra and Apache HBase was chosen and

selected among NoSQL Databases for benchmarking and well configured as

required. Each of the two databases were installed on top of the Ubuntu 17.04

Operating system. While each database was configured to work as a single cluster

33

where replication was not considered in the process unless said, they both received a

Spark streaming of data from Twitter social network.

3.4.3.5.1 Cassandra

A single node Cassandra cluster was setup to receive Spark Streaming with different

interval of time for consistent hashing and receiving tweets to a node, Spark

Streaming was bundled with Apache Cassandra 2.0.6

Cassandra was installed by using a tarball from the Cassandra website. The

murumu3partitioner partitioning strategy was used to improve the performance of the

system by implementing a technique known as Consistent hashing.

Only one copy of data of each row on one node was maintained by setting the

replication factor to 1. The Status of the node was observed and monitored using

nodetool utility. Table 3.3 provide important configuration details of Apache

Cassandra.

Table 3. 3: Cassandra Configuration Details

Parameter Values

Concurrent read Default (32)

Concurrent write Default (32)

Initial token Token generated based on Mumu3Partition hash

values

Partition Default (mumur3partition)

Key_cache_size_in_mb Default 100MB

Seed provider Spark streaming data

Cassandra was downloaded from its website cassandra.apache.org/download where

the version 3.10 was used for the purpose of this experiment. The /opt directory was

34

used to extract Cassandra package and use .bashrc command to set the path for

Apache Cassandra database.

export CASSANDRA_HOME=/opt/cassandra-3.10

export PATH=$CASSANDRA_HOME/bin:$PATH

Cassandra must be started from terminal by type

cd $CASSANDRA_HOME/bin

it‟s better to confirm if Cassandra service is up and running by checking the status of

cluster by using nodetool utility where UN means up and running.

$ sudo nodetool status

Figure 3. 7: Nodetool utility

Source: Researcher data, 2017

for the case of this research a keyspace called “cycling” was created with the table

named “tweets” with name id,tweet” and timein.

35

Create KEYSPACE cycling WITH REPLICATION =

{„class‟:‟simpleStrategy‟,‟replication-factor‟1};

CREATE table tweets(

 id varchar,

tweet varchar

timein varachar

PRIMARY KEY(id));

Cassandra connector from Datastax was used to connect Cassandra database and

Apache Spark with the help of Spark class known as Streaming Context which allow

a Spark streaming from twitter to connect with Spark cluster. This help to get data

from and to write to the Cassandra databases.

3.4.3.5.2 Apache HBase

The HBase cluster was setup to receive streaming of Data from Twitter social

network using Spark streaming. The whole configuration optimized by Zookeeper

and HDFS to run Apache HBase 0.92.0 on ubuntu 17.04 OS. It was split as shown

below.

36

3.4.6.2.1 HBase installation

1. Download the hbase zip file from apache website

2. move the downloaded file to the /opt directory and extract them

3. open the terminal and move to conf folder

cd /opt/Hbase-1.0.0/conf

4. researcher opened and edit the hbase_env.sh

dani@dani:/opt/hbase-1.0.0/conf $vi hbase-env.sh

5. set the hbase path

6. to start the HBase service we use the following command

.start-hbase.sh

7. to start the hbase shell using command ./hbase shell

Figure 3. 8: Starting HBase via Command tool

Source: Researcher data, 2017

Note: before starting the HBase, Hadoop service and Zookeeper were started, and a

Spark-on-HBase connector was used to connect between Apache Spark and HBase.

mailto:dani@dani

37

3.4.4 Dataset

The researcher, construct his own dataset which fit the need of the research when

considering the structure and nature of the storage. Twitter contain a lot of

information‟s, and this has been proved by (Agarwal, 2011a) on his study. Some of

the information per single tweet are language, coordinates, like and unlike, number

of likes, number of re-tweets, username, user id, description follower and image.

Only English text start with (#) was taken because majority of users use it to connect

the idea of the same interest.

Figure 3. 9: Data Structure of tweets

Source: Researcher data, 2017

3.4.5 Data Size

Due to receiving only English text which starts with hashtags, Researcher limit the

content of the tweet. According to UTF-8 characters, a character is represented by 32

bits which is the same as 4 bytes. Thus, if at once, tweet of maximum length of 120

characters received means a size of 800 bytes, so for average of 41 events per each

1ms I expected to have

800bytes * 41

=32800bytes/events/ms

38

Thus, to understand the actual data size of the average tweet size

3.4.6 Data received Rate

The figure 4-2 and 4-3 show the received rate of twitter as it passed through Spark

Streaming via twitter Streaming API. The figures indicate events when triggered

after 5seconds and the process were run for 8 minutes and 17seconds only with the

average of and 11 minutes with the average receiving rate of 8.24

events/sec.

3.4.7 Experimental Scenario

The metrics performance identified at objective (1) help to go further with this study

where the following scenario were used; Data source from twitter was collected, pass

through Spark streaming and later stored at Cassandra or HBase. The write and read

operations occurred at both databases. The performance of both databases was

evaluated by Spark-R as the streaming data continuous.

39

Figure 3. 10: Simulation scenario for Cassandra

Figure 3. 11: Simulation scenario for HBase

40

3.4.7.1 How it works

The basic idea for Spark and Cassandra was to deploy both Spark and Cassandra

cluster in a single computer simulation which has been done and came out with the

results. Cassandra used for purpose of storing streaming data which pass through

Spark. Spark Worker nodes mapped to Cassandra and do a data process.

Spark Streaming section are designed to handle Streaming Data from Twitter

Streaming API. When the tweets arrive, are served first in spark memory to

overcome the issue of data loss which could be caused by network traffic or network

fractuation. Spark Worker understand how to read data from shuffle.

A transformation mechanism allows operations of streaming data from shuffle, after

that data are served into Cassandra for further analysis.

A very simple schema for Cassandra are created for storing Streaming data.

Create KEYSPACE cycling WITH REPLICATION =

{„class‟:‟simpleStrategy‟,‟replication-factor‟1};

CREATE table tweets (

 id varchar,

tweet varchar

timein timestamp

PRIMARY KEY(id));

The table cycling is quietly simple with three columns, where the tweet column used

for tweets as it arrives and controlled with a unique timein identifier which is

essential for clustering key as the data stored in Cassandra.

 val now = new Date ();

sc.cassandraTable ("cycling", "tweets")

. select (“tweet”, "id")

. where (“timein”, now)

. filter (includedStatuses contains .getLang ()==lang)

41

. keyBy (row => (row.getString ("tweet")))

. map { case (key, value) => (key, value.getInt ("id")) }

. reduceByKey(_ + _)

. map { case (tweet) => (tweet, now) }

. saveToCassandra("cycling", "tweet"))

Scala code above produce reasonably results with integration of Spark and

Cassandra.

val hbaseConfiguration = (hbaseConfigFileName: String, tweet: String) =>

{

val hbaseConfiguration = HBaseConfiguration.create()

hbaseConfiguration.addResource(hbaseConfigFileName)

hbaseConfiguration.set(TableInputFormat.INPUT_TABLE, tweet)

hbaseConfiguration

}

val rdd = sparkContext.newAPIHadoopRDD(

hbaseConfiguration("/opt/hbase/hbase-site.xml", "tweets"),

classOf[TableInputFormat],

classOf[ImmutableBytesWritable],

classOf[Result]

)

import scala.collection.JavaConverters._

rdd

.map(tuple => tuple._2)

.map(result => result.getColumn("tweet".getBytes(),

"columnQualifier".getBytes()))

.map(keyValues => {

keyValues.asScala.reduceLeft {

(a, b) => if (a.getTimestamp > b.getTimestamp) a else b

}.getValue

})

To enable apache Spark with HBase, the RDD construction in Spark has been

configured by setting appropriate configuration measure in hbase-site.xml to read

table “tweet”. By having RDD, made easy for HBase operations to handle Streaming

from Spark.

42

The RDD load the data to and from the table “tweet” as “ImmutableBytesWritable”

to obtain the exactly number of tweets.

Load an RDD of (ImmutableBytesWritable,tweet)

The getColumnCells return all the collections of tweets with the timestamps when

the method getColumn executed.

3.5. Data processing and Analysis

In this study, real time streaming data was processed by using Apache Spark and

analyzed using Apache Spark-R and Microsoft Spreadsheet.

3.5.1 Experimental analysis

The experimental method used to find the relationship between Cassandra and HBase

by evaluating them on handling Spark streaming data when considered Throughput

and Latency time as metrics. The analysis was based on finding the average in both

write and read performance when the script set to a particular time. Later, the

experimental analysis based on only read or write performance of the databases are

taken.

3.5.1.1 Benchmark Results Data

3.5.1.1.1 Average benchmark results, triggered after every 5 seconds

The average results for Cassandra and HBase with a trigger time of every 5 seconds,

indicate that Cassandra to have a higher latency time of 6.08 ms and HBase have

2.99 ms.

43

Table 3. 4: Load Records-Average evaluation after 5seconds

Load Records-Average evaluation after 5 sec

Database Throughput Average latency

Cassandra 17577.0789 6.08871577

HBase 37577.30471 2.99781237

3.5.1.1.2 Average benchmark results, triggered after every 10 seconds

The Average results for 20 days workload which evaluated the throughput and

latencies of Cassandra and HBase. The trigger time was 10 seconds after each

iteration. As section 3.5.1.1.1 show, Cassandra has highest throughput as compared

to HBase.

Table 3. 5: Load Records-Average evaluation after 10 seconds

Load Records-Average evaluation after 10 seconds

Database Throughput Average latency

Cassandra 22255.2778 5.401741321

HBase 75156.60958 3.867572121

3.5.1.1.3 Average benchmark results, triggered after every 5 minutes

When the load increase leads to the increase in latencies to both read and write of

Cassandra and HBase. The average Cassandra has 3338921 operations per seconds

while HBase has 2 times than of Cassandra.

Table 0-1: Load Records-Average evaluation after 5 minutes

Load Records-Average evaluation after 5 minutes

Database Throughput Average latency

Cassandra 3338291.671 81.26119815

HBase 75156.60958 52.3681736

44

3.5.1.1.4 Average benchmark results, triggered after every 10 minutes

The average of data collected after every 10 minutes for both 100 read and write in

20 days are indicated at table 3.6.

Table 3. 6: Load Records-Average evaluation after 10 minutes

Load Records-Average evaluation after 10 minutes

Database Throughput Average latency

Cassandra 6475291.78 83.3387891

HBase 22371457.48 72.66789101

3.5.1.1.5 Read (100%) only workload, triggered after every 5 seconds

A total number of 10 iterations was used to collect data in which the trigger time was

set after every 5 seconds. This procedure was conducted for almost 20 days

successively. Heavy read was performed in both Cassandra and HBase for 100% as

data received.

Table 3. 7: Load Records-Average evaluation after 5 seconds

Average throughput and latency after every 5sec for 20 days (read)

database

Iteration

number
Throughput

Average

Latency

target

throughput

Cassandra

2 1890.529001 2.196017567 2000

4 3767.94411 2.887767321 4000

6 5978.80712 4.345678912 6000

8 7841.99431 6.126189933 8000

10 9852.15736 6.930014901 10000

HBase

2 1752.00131 1.63291145 2000

4 3091.22791 1.85971245 4000

6 5293.11349 1.36371143 6000

8 5163.18349 2.77391284 8000

10 5401.17933 2.93374995 10000

45

3.5.1.1.6 Write (100%) only workload, triggered after every 5 seconds

As in section 3.5.1.1.5, data was written as it came directly from spark streaming.

Apache Spark has the capability of storing number of data into memory until the

trigger time after every 5 seconds reached. Both throughput and latencies are

collected and analyzed.

Table 3. 8: Load Records-Average evaluation after 5 seconds

Average throughput and latency after every 5sec for 20 days (write)

Database

Iteration

number
Throughput

Average

Latency

Target

throughput

Cassandra

2 1890.529001 1.798087726 2000

4 3767.94411 2.483267381 4000

6 5978.80712 3.547878982 6000

8 7841.99431 6.126789945 8000

10 9852.15736 6.930014901 10000

HBase

2 1752.00131 10.33891175 2000

4 3091.22791 10.45979243 4000

6 5293.11349 10.46379946 6000

8 5163.18349 10.77393284 8000

10 5401.17933 10.98374997 10000

3.5.1.1.7 Read (100%) only workload, triggered after every 10 seconds

To insure consistency of data collection, data load was increased to 2 times the

collected data as indicated in sections 3.5.1.1.6 and 3.5.1.1.7. Trigger time for read

data was set after every 10 seconds. Number of iteration was 10 for both Cassandra

and HBase.

46

Table 3. 9: Load Records-Average evaluation after 10 seconds

Average throughput and latency after every 10sec for 20 days (read)

Database
Iteration

number
Throughput

Average

Latency

Target

throughput

Cassandra

2 498.529001 7.814 500

4 997.94411 14.564 1000

6 1433.80712 13.897 1500

8 1977.99431 12.987 2000

10 2496.00131 12.0123 2500

HBase

2 482.9345 26.987 500

4 911.4378 28.154 1000

6 1230.437 24.873 1500

8 1732.9834 28.983 2000

10 1798.6921 29.342 2500

3.5.1.1.8 Write (100%) only workload, triggered after every 10 seconds

The write operations were performed as soon after the data was arrived in the

Streaming platform from Twitter Streaming API. Each time the script trigger, the

write operation was performed. Throughput and average latencies was collected for

both Cassandra and HBase.

47

Table 3. 10: Load Records-Average evaluation after 10 seconds

Average throughput and latency after every 10sec for 20days (write)

Database

Iteration

number
Throughput

Average

Latency
target throughput

Cassandra

2 498.529001 1.423 500

4 997.94411 3.335 1000

6 1433.80712 5.768 1500

8 1977.99431 4.66 2000

10 2496.00131 5.01 2500

HBase

2 482.9345 12.994 500

4 911.4378 14.967 1000

6 1230.437 11.994 1500

8 1732.9834 11.989 2000

10 1798.6921 12.013 2500

3.5.2.2.9 Read (100%) only workload, triggered after every 5 minutes

When the workload increased by 50% and collected after every 5 minutes for 20

days successively, the performance of Cassandra and HBase was affected. Read

operations was conducted in each 5 minute obtained average throughput and

Latencies for both Cassandra and HBase on Spark Streaming data.

48

Table 3. 11: Load Records-Average evaluation after 5 minutes

Average throughput and latency after every 5min for 20days (read)

database

Iteration

number
Throughput

Average

Latency
target throughput

Cassandra

2 1899.918 2.9287 2000

4 3973.129 4.43995 4000

6 5801.872 6.3994 6000

8 7901.538 8.7892 8000

10 8678.153 11.6794 10000

HBase

2 1955.99 1.3891 2000

4 3768.635 1.6756 4000

6 5601.652 1.8716 6000

8 7583.678 1.9997 8000

10 9101.647 1.9998 10000

3.5.2.2.10 Write (100%) only workload, triggered after every 5minutes

Data was collected and analyzed for write operation after every 5 minutes for 20

days successively. Spark control the increase of size in memory before writing them

to the database. When the trigger time of 5 minutes reached, the write operation

occurs. Collected data in table below indicate the data collected and average

throughput and latencies for both Cassandra and HBase.

49

Table 3. 12: Load Records-Average evaluation after 5 minutes

Average throughput and latency after every 5min for 20days (write)

Database

Iteration

number
Throughput

Average

Latency

target

throughput

Cassandra

2 1899.918 1.391 2000

4 3973.129 3.335 4000

6 5801.872 5.689 6000

8 7901.538 4.115 8000

10 8678.153 6.325 10000

HBase

2 1955.99 11.998 2000

4 3768.635 13.856 4000

6 5601.652 20.258 6000

8 7583.678 21.965 8000

10 9101.647 23.756 10000

3.5.2.2.11 Read (100%) only workload, triggered after every 10 minutes

To maintain validity, workload was increased to 100% with read operations for

100%. Average throughput and average latencies was collected for both Cassandra

and HBase. In each iteration, average was taken and recorded.

50

Table 3. 13: Load Records-Average evaluation after 10 minutes

Average throughput and latency after every 10min for 20days (read)

Database

Iteration

number
Throughput

Average

Latency
target throughput

Cassandra

2 1999.216 21.3287 2000

4 3938.5487 24.2395 4000

6 5789.0215 25.0213 6000

8 7899.3284 29.4586 8000

10 9972.6589 34.8564 10000

HBase

2 1787.2567 57.695 2000

4 3397.3201 61.562 4000

6 5200.1275 69.458 6000

8 7101.3615 77.0985 8000

10 9081.2548 87.0536 10000

3.6 Ethical Consideration

Gathered data particularly from twitter social network were used for the intention of

this study only and not otherwise, and only disclosure data to the public were taken.

The researcher also uses his own account authentication to fetch streaming data from

Twitter streaming API.

3.7 External Validity

According to (Cozby, 2015) the validity of research dissertation based on how well

the instruments set at measuring the variables at a given study. For the purpose of

this study, the experimental tools were set in appropriate way not to alter the results.

The study was Strong experimental design which based on external validity. Each

data was collected as the corresponding time match and averaging due to iteration

time. To maintain an external validity, the results were compared often and later an

average was be taken for each round.

51

3.8 Economic Planning and Costs

3.8.1 Planning

In order to achieve all the objectives as mentioned in chapter (1), all the tasks have

been mentioned and estimation has been calculated. The Gantt diagram show in

detail how the process has been performed since the beginning. The project was

started in March 2017.

At the beginning the research started with requirement analysis. The IDEA was to

evaluate all NoSQL Databases on streaming data but due to time and cost limitation,

only two Database were evaluated. The evaluation process was to run Cassandra and

HBase on top of Apache Spark.

The next step was to go through various literature review in order to come out with

suitable metrics for evaluation.

Steps after identification of metrics, was to design the architecture of the experiments

and setting the main modules, configuring Apache Spark, Cassandra and HBase.

Process has gone into three different stages.

 Development of the Ingestion Data link layer (Stream processing

application)

 Development of Data Link Layer (Spark application using Scala

Language)

 Development of persistence storage focused on Cassandra and HBase.

All those stages involved in depth understanding of technologies and developing the

simulating application.

52

The final step of the research project was to perform the experiments and evaluate

Cassandra and HBase in different time interval with different data size due to

streaming time while using a single node to each database.

3.8.2 Costs

The cost is divided into two parts, which are development costs and infrastructure

costs which include cost for both hardware and software.

3.8.2.1 Development Costs

Programming task is the job which can be done by a Software engineer. To write

Scala code, Spark Code require in depth understanding and knowledge in each

language.

Thus, the average Cost for this thesis was approximately $10000 per month, for 12

hours/day programme.

Table 3. 14: Development costs

Cost per month Number of Months Total

$10000 4 $40000

3.8.2.2 Infrastructure Costs

This can be divided in both software and hardware costs.

For this research, all software costs are free of charge since I used open source

software‟s. The list below indicates software.

 Apache Spark

 Apache Cassandra

 Apache HBase

53

 Intellij IDE community Edition – Scala IDE

The hardware Cost was also zero since I used Computer present at Ruaha Catholic

University Computer Laboratory.

54

CHAPTER FOUR

FINDINGS AND DISCUSSION

4.0 Introduction

The chapter presents the findings and discussion for each question and objectives.

4.1 Finding and discussion after Documents Analysis

The following question were used to came out with evaluation metrics

What are the performance metrics for evaluating Cassandra and

HBase on Streaming data?

In order to identify performance metrics used to evaluate Cassandra and HBase

Databases, a deep learning of papers, thesis, journal was used. Researcher categories

the evaluation in two groups: Relational and non-Relational databases. The metrics

used are throughput and latency time and used for these results. The frequency

distribution in figure 4-1 indicates and rank evaluated metrics. Because throughput

and latency has been used frequently and for a larger number during database

evaluation, this was the reason researcher use these two as evaluation metrics.

55

Figure 4. 1: Evaluation metrics

Source: Researcher data, 2017

4.2 Finding and discussion after Experimental Research study

By considering the nature of the research, only two core parameters were

considered, namely throughput and latency time for both read and write operations.

In case of in-memory usage, input and output operations, the first approach was to

consider the streaming of Tweeter data after every 5 sec, 10 sec, 5 min and 10

minutes as indicated from figure 4-4 to figure 4-10.

4.3 Data received Rate

The figure 4-2 and 4-3 show the received rate of twitter as it passed through Spark

Streaming via twitter Streaming API. The figures show the events when triggered

after 5seconds and the process were run for 8minutes and 17 seconds only with the

average of and 11 minutes with the average receiving rate of 8.24

events/sec

56

Figure 0-1: Receiving rate at interval of 5seconds for 8 minutes

Figure 4. 2: Receiving rate at interval of 5seconds for 11 minutes

4.4 Benchmark results

Experiments were run on both Apache Cassandra and Apache HBase using Spark-R

and with Scala script which helped to automate the process. Four different time

intervals were used to run the workload into five different iteration. Only the

workloads with 10 seconds interval time were set with target throughput of

500,1000, 1500,2000 and 2500 ops/sec for both read and write operations while

others, 5sec,5min and 10min were set with target throughput of

2000,4000,6000,8000 and 10000. For each time interval, there was 5 iteration which

was set as 2 iterations,4,6,8 and 10 iterations runs for 20 days which act as a trigger

to allow a better read and write performance.

57

Figure 4. 3: Read (100%) only workload: 5 seconds for 20 days

Cassandra‟s average Latency increase relatively exponential with increase in

throughput. I can conclude that when Cassandra achieve overall throughput it also

delivers highest average latencies which is 50% than that of HBase. The read

performance of the HBase has improved with increase in throughput and this could

be due to its to commit in memory. Thus, as the number of iteration increase the

throughput stick to 30% while having low latency time.

58

Figure 4. 4: Write (100%) only workload: every 5 seconds for 20 days

Cassandra lives up to its name and ready to perform write with considerably less

latency than its read. Its performance increase as the workload increase although

there a slightly increase in latency. HBase on the other hand, show a linear increase

in throughput until when it reaches to 40% of the workload where it stacks on that

mark as the workload increase. Although, HBase show better consistency on the

throughput at the begging of the process but it has been starting with higher average

latencies and this could be because of flush commit process which force the

synchronous flush of the write buffer.

Figure 4. 5: Read (100%) only workload: every 10 seconds for 20 days

With 20% operations added as workload where by the trigger mechanism for read

happened after every 10 seconds. Cassandra (2458 ops/sec) still has highest

throughput while HBase shows the least throughput which is almost similar to the

59

experiment conducted after every 5 seconds. When reading streaming data,

Cassandra seems to have highest latency (14ms) before start to decrease as the

workload increase. HBase continue to face the same problem of highest latency as

write-only workload in 5seconds-write although it shows good sign as the latency

stop increasing at (24ms) as the workload increase.

Figure 4. 6: Write (100%) only workload: every 10 seconds for 20 days

In this experiment, the overall performance of Apache Cassandra continues to show

good performance as the workload increase in write (100%) operation. Cassandra

suffer from increase in average latencies time as the workload increase. Workload

performance on HBase is slightly improving for small set of data and stop at

(1879ops/sec) while its average latencies time decrease for small amount from 15ms

to 12.9 ms which maintained that level as the workload increase.

60

Figure 4. 7: Read (100%) only workload: every 5minutes for 20 days

Heavy read on a very larger data set, HBase show a best performance on both

throughput and Latency time. Only the average latencies of 2ms maintained

(increase linearly) for the whole workload from day one to the last day, this is one of

its advantages in read operation (Jiang, 2012). The performance of Cassandra was

affected by the exponential increase in latencies time. By 98% the performance of

HBase was better compare to that of Cassandra on handling streaming data with the

read of data after every 5 seconds in 20 consecutive days.

61

Figure 4. 8: Read (100%) only workload: every 5minutes for 20 days

In this experiment, Cassandra (9200ops/sec) still highest throughput with low

latency time compared to HBase which has high throughput with highest latency

time. Cassandra (5msec) has smallest latency compared to HBase (24ms). Cassandra

has slightly increase in average latencies time when doing write operation compare

to how HBase increase.

62

Figure 4. 9: Write (100%) only workload: every 10 minutes for 20 days

The last experiment was the read and write (100%) operations whereby it was

desired to prove the performance of HBase over that of Cassandra. HBase show

poor performance compared to Cassandra in terms of the response time since it

delays are very high (over 50%) to that of Cassandra. Cassandra had the best

throughput performance for large data sets, approximately twice the performance of

that HBase had. Figure 4.10 and 4.11 show the individual graph for response time

and throughput for every 10 minutes in 10 iteration nodes for 20 days on handling

streaming data.

63

Figure 4. 10: Average Latency time after every 10 minutes in 10 iterations for

20 days

The average latencies time between Cassandra and HBase in general show that,

Cassandra has lowest average latencies time compared to HBase as the workload

increases. While the increase of latencies time in Cassandra was almost linear, in

HBase was exponential increment of average latencies time.

Figure 4. 11: Throughput after every 10 minutes in 10 iterations for 20 days

As the workload increase by 100% of streaming data flowing from Twitter

Streaming API, there were high increase of throughput in Cassandra compared to

that of HBase database.

64

CHAPTER FIVE

SUMMARY, CONCLUSION AND FUTURE WORK

5.0 Introduction

This chapter looks into the dissertation objectives and establishes to what extent the

study has achieved.

5.1 Summary of the research objectives

1. To identify performance metrics for evaluating Cassandra and HBase

databases on Streaming Data.

2. To assessing the performance of Cassandra and HBase on Streaming data

using apache Spark.

3. To propose which of the two NoSQL database is most suitable for streaming

data using Spark.

The summary of objectives are summaries below

1. To identify performance metrics for evaluating Cassandra and HBase

databases on Streaming Data.

Documents analysis were used to come out with evaluated metrics. Both NoSQL and

SQL databases were evaluated. NoSQL databases includes Cassandra, HBase and

MongoDB where by SQL databases includes SQLServer, MySQL and PostgreSQL.

Selected metrics for evaluation was throughput and average latencies time.

2. To assessing the performance of Cassandra and HBase on Streaming

data using apache Spark.

Different number of iteration were used to evaluate the databases. Throughput and

average latencies for both Cassandra and HBase were recorded and analyzed. A

65

trigger time was set to 5 seconds, 10 seconds, 5 minutes and 10 minutes. By average

Cassandra was observed to have high performance on writing operation compared to

HBase. Apache Spark Streaming was used as platform for evaluation while the

Twitter Streaming API used as ingestion tool.

3.To propose which of the two NoSQL database is most suitable for

streaming data using Spark

Apache Cassandra was found to be best on handling Streaming data using Apache

Spark, it found to have the average of 69.14% better throughput compare to 30.399%

that of HBase in all test performed in this dissertation. As the streaming data

increase, throughput was found to increase while decreasing in average latencies

time by 1.07%. For the case of continuous flowing of data and real-time analysis,

Researcher suggest the use of Apache Cassandra.

5.2 Conclusions

Researcher sought that the choice of Databases to be used depend on the needs of the

user. Studies has been conducted to compare databases with various opinion, reasons

and needs. A study conducted by (Li & Manoharan, 2013) was about finding

performance comparison between SQL and NoSQL. (Li & Manoharan, 2013)

concluded that not in all cases NoSQL databases perform better than SQL in terms of

read, write and delete operations.

 The evaluation of NoSQL database has been conducted by (Ayush, 2014) by

integrating with Hadoop as analytics tool. The study (Ayush, 2014) found Hadoop-

MongoDB was not efficient in terms of read while Hadoop-Cassandra was more

stable in write operation, the only limitation to them was Hadoop not to be designed

66

for analytics. According to (Sergey Bushik, 2012) found that Cassandra write

operation was good in write operation when compared to HBase on processing batch

data.

The findings in this study is much like that of (Ayush, 2014; Sergey Bushik, 2012)

findings on the comparison of NoSQL databases, the only difference is that, this

study was dealing with spark streaming data. Researcher chose Apache Spark as the

framework to be on top to evaluate both Cassandra and HBase databases, because of

its capability on handling Streaming Data. For the best comparison, researcher

thought that common factors must be considered when you evaluate databases. In

this study, only NoSQL database from column-family are taken.

Within the experiment, Researcher have managed to use Twitter Streaming API and

constructed a dataset which receive tweets from twitter social network. Researcher

went through several studies included literature review to accomplish objective (1)

while chapter (3) and (4) used for the rest of objectives, therefore the main objective

of this study can be considered accomplished.

After experiment, results show that Spark-Cassandra performed best when it comes

write operations because as the streaming workload increase, its average latencies

time was continuing to be minimal. NoSQL databases are considered to be fast, but

Spark-Cassandra was not efficient in read streaming data operation. Spark-HBase did

well when it comes to read operation as the workload increase. Therefore, suggest

the use of Apache Cassandra on handling Streaming data is being suggested when

apache Spark is used as analytic platform.

67

5.3 Future Work

Much work could be done on this experiment but due to time and financial

constraints limitation, only few experiments were performed. The test was conducted

for only 20 successively days and provided the interesting results on database arena,

but much more work can be done to further study.

Other researcher can continue to do this experiment by involve other NoSQL

Databases from Document, Key-Value and Graph database as this study deal only

with Column-family database category. Also, the study can go further by evaluating

NoSQL using Apache Storm as data link layer for streaming and real-time data,

Flume or Kafka as data ingestion tool. This analysis can also be done by comparing

the data partitioning capability of Spark-Cassandra and Spark-HBase in

heterogeneous network when handling streaming data from different sources.

68

REFERENCES

Adams, A., & McCorkindale, T. (2013), Dialogue and transparency: A content

analysis of how the 2012 presidential candidates used twitter. Public

Relations Review, 39(4), 357–359. https://doi.org/10. 1016/j.pubrev.

2013.07.016

Agarwal. (2011a), Sentiment analysis of Twitter data. Association for Computational

Linguistics, 30–38. Retrieved from http://dl.acm.org/citation. cfm?

id=2021109. 2021114%5Cnpapers3://publication/uuid/83CA53FE-

43D1- 4BD5-BCF2-D55B82CF0F99

Agarwal. (2011b), Sentiment Analysis of Twitter Data. Proceedings of the Workshop

on Languages in Social Media, (June), 30–38. Retrieved from

http://dl.acm.org/citation.cfm?id=2021109.2021114%5Cnpapers3://publi

cation/uuid/83CA53FE-43D1-4BD5-BCF2-

D55B82CF0F99%5Cnhttp://dl.acm.org/citation.cfm?id=2021109.202111

4

Aniceto, R., Xavier, R., Guimarães, V., Hondo, F., Holanda, M., Walter, M. E., &

Lifschitz, S. (2015), Evaluating the cassandra NoSQL database approach

for genomic data persistency. International Journal of Genomics, 2015.

https://doi.org/10.1155/2015/502795

Apache. (2013), HBase. The Apache Software Foundation. Retrieved from

http://hbase.apache.org/

Apache HBase – Apache HBase
TM

 Home. (2017), Retrieved from http://hbase.

apache.org/

Apache Spark. (2015), Apache Spark
TM

 - Lightning-Fast Cluster Computing.

Retrieved from http://spark.apache.org/

Ayush. (2014), Performance Analysis of NoSQL Databases with Hadoop Integration,

(July).

Babcock, B., & Babu. (2002), Models and Issues in Data Stream Systems.

Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, 1–16. https://doi.org/ 10.1145/

543614.543615

Barata. (2014), YCSB and TPC-H: Big data and decision support benchmarks.

Proceedings - 2014 IEEE International Congress on Big Data, BigData

Congress 2014, 800–801. https://doi.org/ 10.1109/BigData. Congress.

2014.128

Barata, M. (2015), Cassandra : what it does and what it does not and benchmarking.

Int. J. Business Process Integratoin and Management, 7(4), 364–371.

https://doi.org/10.1504/IJBPIM.2015.073658

69

Benhardus, J., & Kalita, J. (2013), Streaming trend detection in twitter. International

Journal of Web Based Communities, 9(1), 122–139. https://doi.org/

10.1504/IJWBC.2013.051298

Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O., …

Moran, C. (2010), IBM Infosphere Streams for Scalable, Real-time,

Intelligent Transportation Services. Sigmod, 1093–1104. https://doi.org/

10.1145/1807167.1807291

Bifet, A., & Frank, E. (2010), Sentiment knowledge discovery in Twitter streaming

data. In Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

(Vol. 6332 LNAI, pp. 1–15). https://doi.org/10.1007/978-3-642-16184-

1_1

Brewer, E. (2012), CAP twelve years later: How the “rules” have changed.

Computer, 45(2), 23–29. https://doi.org/10.1109/MC.2012.37

Cassandra, A. A. (2016), Apache Cassandra
TM

 2.2, (July 2008).

Cooper. (2010), Benchmarking cloud serving systems with YCSB. Proceedings of

the 1st ACM Symposium on Cloud Computing - SoCC ’10, 143–154.

https://doi.org/10.1145/1807128.1807152

Cozby, P. C. (2015), Methods in Behavioural Research. 12th Ed.

Creswell, J. W. (2014), research design.

Databricks - Making Big Data Simple. (2017), Retrieved July 29, 2017, from

https://databricks.com/

Datastax. (2015), Benchmarking Top NoSQL Databases, (April), 13. Retrieved from

http://www.datastax.com/wp-content/uploads/2013/02/WP-

Benchmarking-Top-NoSQL-Databases.pdf

Dissertation, A. (2006), February 2006 c Copyright by Arvind Arasu 2006 All Rights

Reserved ii, (February).

Eric Redmond, J. R. W. (2012), Seven Databases in Seven Weeks A Guide to Modern

Databases and the NoSQL Movement.

Fiannaca, A. J., & Huang, J. (2015), Benchmarking of Relational and NoSQL

Databases to Determine Constraints for Querying Robot Execution Logs.

Gandini, A., & Gribaudo. (2014), Performance evaluation of NoSQL databases.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 8721 LNCS,

16–29. https://doi.org/10.1007/978-3-319-10885-8_2

70

Gedik, B., & Andrade, H. (2012), A model-based framework for building extensible,

high performance stream processing middleware and programming

language for IBM InfoSphere Streams. Software - Practice and

Experience, 42(11), 1363–1391. https://doi.org/10.1002/spe.1139

Go, A., Huang, L., & Bhayani, R. (2009), Twitter Sentiment Analysis. Entropy,

(June), 17. https://doi.org/10.1007/978-3-642-35176-1_32

Gokavarapu. (2010), Exploring Cassandra and HBase with BigTable Model.

Pragmatic Programming Techniques. Retrieved from http://horicky.

blogspot.com/2010/10/bigtable-model-with-cassandra-and-hbase.html

Gokavarapu, H., & Qiu, J. (n.d.). Exploring Cassandra and HBase with BigTable

Model.

Guller, M. (2015), Big Data Analytics with Spark.

Gupta, R., Gupta, H., & Mohania, M. (2012), Cloud computing and big data

analytics: What is new from databases perspective? In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) (Vol. 7678 LNCS, pp.

42–61). https://doi.org/10.1007/978-3-642-35542-4_5

Holik, F., & Horalek. (2015), Effective penetration testing with Metasploit

framework and methodologies. In CINTI 2014 - 15th IEEE International

Symposium on Computational Intelligence and Informatics, Proceedings

(pp. 237–242). https://doi.org/10.1109/CINTI.2014.7028682

IBM Streams. (2016), Retrieved November 9, 2016, from http://www-

03.ibm.com/software/products/en/ibm-streams

Jacobs, R. (1993), Computer Simulation in Management Science - Third Edition

(Book). European Journal of Operational Research, 71(1), 137–138.

Retrieved from http://search.ebscohost. com/login.aspx?direct=true

&db= buh&AN=8512200&site=ehost-live

Jiang, Y. (2012), Hbase Administration Cookbook. Retrieved from http://books.

google.com/books?id=QDZm1juBH1YC&pgis=1

Kalakanti. (2015), A comprehensive evaluation of NoSQL datastores in the context

of historians and sensor data analysis. Proceedings - 2015 IEEE

International Conference on Big Data, IEEE Big Data 2015, 1797–1806.

https://doi.org/10.1109/BigData.2015.7363952

Karau, H., & Konwinski. (2015), Learning Spark.

Klein. (2015), Performance Evaluation of NoSQL Databases: A Case Study.

Proceedings of the 1st Workshop on Performance Analysis of Big Data

Systems, 5–10. https://doi.org/10.1145/2694730.2694731

71

Kumar Vavilapalli, V., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans,

R., … Baldeschwieler, E. (2013), Apache Hadoop YARN: Yet Another

Resource Negotiator. SOCC ’13 Proceedings of the 4th Annual

Symposium on Cloud Computing , 13, 1–3. https://doi.org/ 10.1145/2523

616.2523633

L. Christensen, R. J. (2015), Research Methods, Design and Analysis- Twelfth

Edition.

Lakshman, S., Melkote, S., Liang, J., & Mayuram, R. (2016), Nitro: A Fast, Scalable

In-Memory Storage Engine for NoSQL Global Secondary Index, 9(13),

1413–1424.

Li, Y., & Manoharan, S. (2013), A performance comparison of SQL and NoSQL

databases. In IEEE Pacific RIM Conference on Communications,

Computers, and Signal Processing - Proceedings (pp. 15–19).

https://doi.org/10.1109/PACRIM.2013.6625441

Lynch. (2014), Perspectives on the CAP Theorem Accessed Detailed Terms

Perspectives on the CAP Theorem, 0–10.

Maarala, A. I., & Rautiainen. (2015), Low latency analytics for streaming traffic data

with Apache Spark. In Proceedings - 2015 IEEE International

Conference on Big Data, IEEE Big Data 2015 (pp. 2855–2858).

https://doi.org/10.1109/BigData.2015.7364101

Makris, A., & Tserpes, D. (2016), A Classification of NoSQL Data Stores Based on

Key Design Characteristics. In Procedia Computer Science (Vol. 97).

https://doi.org/10.1016/j.procs.2016.08.284

Morstatter, F., Pfeffer, J., Liu, H., & Carley, K. (2013), Is the sample good enough?

Comparing data from Twitter‟s streaming API with Twitter‟s firehose.

Proceedings of ICWSM, 400–408. https://doi.org/10.1007/978-3-319-

05579-4_10

Nabi, Z., Wagle, R., & Bouillet, E. (2015), The best of two worlds: Integrating IBM

InfoSphere Streams with Apache YARN. In Proceedings - 2014 IEEE

International Conference on Big Data, IEEE Big Data 2014 (pp. 47–51).

https://doi.org/10.1109/BigData.2014.7004443

Nicoll, A. (2011), Stuxnet: targeting Iran‟s nuclear programme. Strategic Comments,

17(2), 1–3. https://doi.org/10.1080/13567888.2011.575612

Penetration Testing Software | Metasploit. (2017), Retrieved November 9, 2016,

from https://www.metasploit.com/

Ranjan, R. (2014), Streaming Big Data Processing in Datacenter Clouds. IEEE Cloud

Computing, 1(1), 78–83. https://doi.org/10.1109/MCC.2014.22

72

Roesch, M. (1999), Snort: Lightweight Intrusion Detection for Networks. LISA ’99:

13th Systems Administration Conference, 229–238. https://doi.org/http://

portal.acm.org/citation.cfm?id=1039834.1039864

Sadalage, P., & Fowler, M. (2012),NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence. Vasa. https://doi.org/0321826620

Sergey Bushik. (2012), A vendor-independent comparison of NoSQL databases :

Cassandra, HBase, MongoDB, Riak. Altoros, 1–6.

Shanahan, J. G., & Dai, L. (2015), Large Scale Distributed Data Science using

Apache Spark. Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining - KDD ’15,

2323–2324. https://doi.org/10.1145/2783258.2789993

Sharma, S., & Tim. (2015), Classification and Comparison of NoSQL Big Data

Models. International Journal of Big Data Intelligence, 2(3), 201–221.

Sukhdev, D. V. (n.d.). EVALUATING CASSANDRA , MONGO DB LIKE NOSQL

DATASETS USING HADOOP STREAMING, 1–4.

Sullivan, D. (2015), NoSQL Fore Mere Mortals.

Taylor, J. (2012), Oracle Real Time Decisions (RTD) Product Review.

Terry, D., Goldberg, D., Nichols, D., & Oki, B. (1992), Continuous queries over

append-only databases. ACM SIGMOD Record, 21(2), 321–330.

https://doi.org/10.1145/141484.130333

Tolerance, F. (2009), Sharding , Amazon , and the Birth of NoSQL, 39–51.

Veronika Abramova. (2014), Experimental Evaluation of Nosql Databases.

International Journal of Database Management Systems (IJDMS) Vol.6,

No.3, June 2014, 6(3), 1–16. https://doi.org/10.5121/ijdms.2014.6301

Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012), A System for

Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election

Cycle. Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics, (July), 115–120. https://doi.org/10.

1145/1935826.1935854

White, T. (2012, Hadoop: The definitive guide 4th Edition. Online, 54, 258.

https://doi.org/citeulike-article-id:4882841

Wireshark ·Go Deep. (2017), Retrieved November 9, 2016, from https://www.

wireshark.org/

73

Yang, H., Dasdan, A., Hsiao, R.-L., & Parker, D. S. (2007), Map-reduce-merge. In

Proceedings of the 2007 ACM SIGMOD international conference on

Management of data - SIGMOD ’07 (p. 1029). https://doi.org/

10.1145/1247480.1247602

Yulevich, Y., Pyasik, A., & Gorelik, L. (2012), Anomaly detection algorithms on

IBM InfoSphere streams: Anomaly detection for data in motion. In

Proceedings of the 2012 10th IEEE International Symposium on Parallel

and Distributed Processing with Applications, ISPA 2012 (pp. 301–308).

https://doi.org/10.1109/ISPA.2012.145

74

APPENDICES

Appendix I: External Examiner Corrections

Presented

Chapters

Comments from

External

Supervisor

Correction Area

done by Candidate

Page number.

(a) Chapter 1: Proposed to edit the

second specific

objective and its

corresponding

question

Second specific

objective with its

corresponding

question has been

edited successful

Page numbers

13

(b) Chapter

two:

Literature

Review

-contradiction on

statement in

relation to years of

publication at

section 2.2.4

-to complete

literature review

with research gap

-correction has

been made to the

actual years of

publication at

section 2.2.4

-research gap added

at section 2.3

Page number

19,22

(c) Chapter 3

Research

Methodolog

y

-In methodology

one presents what is

to be done, how and

why to enable

another researcher

to repeat what the

candidate did in

realizing the

different research

questions. This is

not coming out

clearly.

-Figures and

-The whole chapter

was restructured

and improved by

numbering the table

and figures using

chapter-wise

format.

-justification has

been added at

section 3.2

Page number

23 -53

75

numbers must be

numbered using

chapter wise

format.

-to remove part of

literature review or

to use justification

for a selection part.

(d) Summary,

conclusion

and future

work

-improve the

summary by

providing

quantitative

findings and what it

means.

-Conclusion should

be sharper and link

to research

objective/ questions

section was

improved as

instructed at

sections 5.1 and

5.2.

Chapter five

 Sections 5.1

and 5.2

(e) Dissertation

Presentation

and Writing

-There are a lot of

grammar,

punctuation and

other issues some

of which are

highlighted in the

dissertation.

-figures and tables

must be numbered

using chapter wise

format

-quality of figure

must be improved

-figures and tables

for the whole

dissertation has

been improved,

grammar and

punctuation

mistakes has been

collected.

The whole

Dissertation

76

