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ABSTRACT 

The main purpose of this dissertation was to evaluate the performance of Cassandra 

and HBase NoSQL Databases, that present at Column-oriented category on handling 

streaming data. The data set used for this evaluation were constructed with the help 

of the Twitter Streaming API. The environment which used to evaluate the 

performance of Cassandra and HBase on Streaming Data was Apache Spark with its 

ability to plot streaming data from source using Spark-R. 

Several studies have been considered, and came out with evaluation metrics. Among 

the metrics found include computation time, memory used, read and write bytes, and 

CPU usage. 

The benchmark performance of the two column family NoSQL Databases 

(Cassandra and HBase) were completed. The researcher, benchmark 4 different 

implementations by setting the time interval of 5seconds, 10 seconds, 5 minutes and 

10 minutes for 10 iterations with 20 days. 

The performance on two NoSQL databases were evaluated in terms of computation 

time where throughput and latency time were the metrics. Cassandra seem to have 

the overall good performance in write operation when the streaming workload 

increase compared to HBase while HBase show the overall low performance in 

computation for having high average latencies time particularly in writing operation. 

To have accuracy result, each test results were averaging to came out with average 

results. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Introduction 

Data is the crucial thing. We cannot avoid speaking of data while we need it in our 

daily life. Data can be stored in form of clustering or classification, supervised or 

unsupervised, and when processed, an important decision could be made from it. The 

relational database has been the vital choice for many professional when it comes to 

data management because of its ability on maintain ACID properties. As the 

technologies changes, data management professionals can store structured, semi-

structured and unstructured data in a collective ways of data management tools called 

NoSQL. There are technologies which help to measure the flood velocity of data 

from different sources, Hadoop and Map-Reduce Technique work best in distributed 

system where it processes data in terms of batch system. Apache Storm and Apache 

Spark are new processing data specifically for streaming data.  

1.1 Background  

1.1.1 Relational Databases 

These represent objects in tables which consist of tuples and fields. Relational 

database management systems are set of programs special for managing data and 

programs that are used to manipulate data and most of them consist of query 

language, data dictionary, memory management programs and storage 

programs(Sullivan, 2015). SQL is query language of all relational databases which 

perform both defining data structure and manipulation of data operations such as 

insert, update, delete even reading of data. Relational databases are faced by different 

challenge such as low volumes of read and write operations, low latency response 

times and low availability tendency (Sullivan, 2015) which has been solved by the 
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originated of NoSQL Database (Lakshman, Melkote, Liang, & Mayuram, 2016; 

Sullivan, 2015). 

1.1.2 NoSQL Databases 

Are designed to run in multiple server although this is not a necessary requirement 

(Tolerance, 2009). The benchmark motivations of NoSQL databases including the 

need for availability, scalability (Scale-Up), schema-less, simplicity and cost 

control(Sullivan, 2015). There are four categories of NoSQL Databases namely Key-

Values, Document, Column-Family and Graph databases(Eric Redmond, 2012; 

Tolerance, 2009). Relational databases follow ACID properties, NOSQL databases 

follow the BASE properties (Sadalage & Fowler, 2012). All the NoSQL database 

must guarantee the CAP theorem where the relationship among availability, 

Consistency and persistence tolerance are stated (Eric Redmond, 2012; Lynch, 

2014), the CAP theorem state that: “any networked shared-data system can have at 

most two of three desirable properties which are consistency (C), high availability 

(A) of that data (for updates) and tolerance to network partitions(P)” (Brewer, 2012). 

Among major player of NoSQL Database includes, Google BigTable, HBase, 

Hypertable, Amazon Dynamo, Voldemort, Cassandra, Redis, CouchDB, MongoDB  

(Gokavarapu, 2010). The basic reasons why I chose this kind of database is because 

of its properties of schema-less and its use simple mechanism to store data in binary 

form. 

1.1.2.1 Categories of NoSQL Databases 

1.1.2.1.1 Key -value 

The key value type basically, uses a hash table with a unique key point to a particular 

item of data (Makris & Tserpes, 2016) . The performance of key value database has 
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great impact due to its ability of caching mechanism that accompany the mappings. It 

has been designed for storing, retrieving and managing the data structure and 

associative arrays. It has schema-less properties and the value of data is opaque. 

Value in key-value (Sharma & Tim, 2015) databases are accessed by a key and the 

stored value can be images, binaries, videos, HTML, strings and other formats. 

Key-value database has advantage on flexibility of data model, because data store 

does not enforce any structure on the data. Also, the architecture of the key-value 

favors high performance than relational databases because there is no need to 

perform join, union and lock. It does not need to search through every column to 

search for particular item because of using a key to search the location of the object. 

1.1.2.1.2 Document Database 

Document NoSQL databases are schema-less and flexible that can allow any type of 

document to load without understanding the inside structure of the document, thus no 

need of the prior knowledge of the data structure and the value in it (Sharma & Tim, 

2015). The flexibility makes this kind of database mostly used in Agile development 

process. Some common standard for encoding used by document databases includes 

JSON, BSON and XML (Eric Redmond, 2012). 

1.1.2.1.3 Column Family 

Column-oriented NoSQL database (Sadalage & Fowler, 2012), are similar to 

relational database although are quietly difference. Data are stored in cells grouped in 

a column rather than as rows of data. Logically its columns are grouped into a family 

of similar column. Single column families can contain multiple column within. Thus, 

referencing during read and write always use column and not rows  (Datastax, 2015). 
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Some basic concept to understand about column family are column families, super 

column and column. 

 Column families – show how data stored in disk. Can contain multiple 

supple columns and column. All data with the same properties in a single 

column are grouped together in the same file. 

 A super column is like a dictionary which contains other columns but no 

other super columns. 

 A column is a column which contains timestamp, name of the value and 

value itself. The timestamp is what differentiate it with key/value databases. 

Table 1. 1: Column-family database model 

COLUMN FAMILY 

Column Name 1 Column Name 2 Column Name 2 

Value 1a: timestamp1a Value 2a: timestamp2a Value 3a: timestamp3a 

Value 2b: timestamp2b Value 2b: timestamp2b Value 3b: timestamp3b 

Value 1c: timestamp1c Value 2c: timestamp2c Value 3c: timestamp3c 

Source: Sullivan, 2015 

1.1.2.1.4 Graph Database 

In Graph NoSQL Database, (Fiannaca & Huang, 2015; Sadalage & Fowler, 2012) 

focus is defining data with relation to other data present on database. Its format is 

quite different from that of SQL or Column-Family. Its structure use edge, nodes and 

properties of each. Graph database are good in data mining, monitoring of epidemic 

disease and finding relationship among objects (Eric Redmond, 2012). We simply 

say, they use nodes and edges to store and represent data, with the help of edge there 

is a relationship among nodes with defined properties. 
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Figure 1. 1: Graph NoSQL Database 

Source: Researcher data, 2017 

Example of Graph database includes Neo4j, MeshBase, GiraffeDB 

1.1.2.2 Apache Cassandra 

Cassandra (Barata, 2015) is an open source distributed data store under Apache 

Software foundation which combine Google‟s BigTable data model and Amazon‟s 

Dynamo distributed system technologies. 

It was first developed by Facebook in 2008 and in 2009 became one of Apache 

Incubator project (Barata, 2015). It has decentralized model architecture with no 

single point of failure. Cassandra support replication which improve the reliability of 

data, helps the performance by spreading the workload across multiple replicas, the 

update request is always more challengeable than write request due to updates 

problems in replicas of data. HBase also has Scalability properties which can enable 
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additional of new hardware and node without failure. It come with its own language 

called Cassandra Query language (CQL) and other language drivers for other 

programming language such as python, java and Scala. Cassandra also support 

Apache Pig, Apache Storm, Apache Spark and Hadoop Map. One advantage of 

Cassandra is the support of all fata format from structured, semi-structured and 

unstructured data. 

 

 

Figure 1. 2: Apache Cassandra Architecture 

Source: Eric Redmond, 2012 

1.1.2.3 Apache HBase 

HBase, (Gokavarapu, 2010)  is an open source running on top of Hadoop 

Distributed file system (HDFS) which become the Apache project in 2010. It is a 

column-oriented database (Gokavarapu, 2010)  which based on Google‟s BigTable. 

To access HBase you can use command line or Scala API. 

HBase contains different components but the two of the components are much 

prominent to developers, namely Master server and region Servers. Master Server 

used to assign region to the region servers while handling of load balance and 
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maintenance of schema changes and Region Severs are responsible for handling 

request particularly read and write requests.  

Most companies dealing with Big Data problems use HBase. Facebook has been 

using HBase as a new messaging infrastructure (Eric Redmond, 2012), Stumbleupon 

use it for real-time data storage and analytics while Twitter use it for storing,  

monitoring the performance of data and data generation. Other companies using 

HBase includes Meetup, Ning, Yahoo!, and eBay  (Eric Redmond, 2012). 

 

Figure 1. 3: Apache HBase Architecture 

Source : “Apache HBase – Apache HBase
TM

 Home,” 2017 

1.1.3 Apache Spark 

Apache Spark is an open source framework which developed at the university of 

Berkley and in 2013 entered the apache incubator. It has been designed for resillent 

distributed dataset (RDD) (Apache Spark, 2015). 
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Figure 1. 4:  Apache Sparks and its plugins  

Source : “Databricks - Making Big Data Simple,” 2017 

Apache Spark has been built to communicate with languages like java, python, Scala 

and R. It  can communicate with Apache Kafka, Twitter API, parquest, HBase, 

Cassandra, MongoDB and used for data streams, Machine learning, graphX and 

SparkSQL (Apache Spark, 2015).  

 

Figure 1. 5: Internal architecture of Apache Spark 

Source : Apache spark, 2015 

Spark has been developed using Scala Language thus it is compatible with any JVM 

language. As the compiled code analyzed, the resillent datasets are generated in 
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some amount. Simply the RDD can be termed as the carrying objects for data and 

operations.  

Spark context allow the data from outside to be able to connect to the cluster 

manager. Also, Spark context area is responsible for creating instance of data stream 

and converting size batch data to units. 

1. Map Reduce is a technique developed by Google for increasing computation 

process in big data problems (Yang, Dasdan, Hsiao, & Parker, 2007). The 

concept behind is by distributing the operation by map them over several 

clusters and reduce the data structure. By doing this makes an expensive 

operation to be with high parallizable.  

 

Figure 1. 6: Schema of map-reduce  

Source- Researcher data 

2. RDD - Resillent Distributed Data, Strict structure has been one of the 

disadvantage of map reduce pattern, due to ability of each dataset to do the 

same operation. To address this problem, apache Spark solve it by 

introducing resillent distributed data structure where it encapsulates chucks 
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of data and transform into a lightweight data structure (Apache Spark, 2015). 

The RDD are backbone for Apache Spark since they help the data stream to 

be discretized by Spark streaming for processed  

1.1.3.1 Apache Spark Streaming 

Apache Spark was developed for many purpose, specifically for implementation of 

RDD (Guller, 2015). This framework can be used for streaming data, machine 

learning and graph processor. 

Discretization is a primary abstraction that is provided by Spark streaming when 

working with data streams. When Apache Spark needs to handle real time data, it 

needs to split them into batches. Apache Spark implement discretized stream as a 

sequence of RDD. The interface for processing data stream is called Stream (discrete 

Stream) 

 

Figure 1. 7: Transformation of DStream 

Source: Apache Spark, 2015 

Computing; Always the start method begins stream computation. DStream 

represent all the stream in batches (Apache Spark, 2015) which are handled as RDD 

in Apache Spark. 
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Figure 1. 8: DStream represent multiple RDD 

Source: Researcher data 

Several application benefit from dealing with streaming data as soon as it arrives 

(Karau & Konwinski, 2015). For example, the application which track number of 

coordinates as a mouth as it moving on web page, training machine learning model, 

tracking of the movement of tyres as the car move. Thus, decision makers in their 

business have to use Streaming API for analysis.  

1.1.4 Statement of The Problem 

“The lack of clear NoSQL database evaluation for the case of Data Streaming create 

a fear, anxiety and mislead in decision making for business success and for software 

developer during data analytics.”  

Continuous flowing of data generated from different sources with different varieties 

are transferred in a form of the small size of kilobytes, typically these data are 

generated by web applications, e-commerce purchase, social networks information‟s, 

customers from financial trading centers, on line gaming playing. Since these data 

are generated continuously, they can be processed and used for analytics, thus the 

analytics information from streaming data can help people who work with data in 

their everyday and every time work for prediction of customers, sales trends and 
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weather forecasting, make better decision for their company, hospital, institution and 

organization to increase performance.  

However, the dominant relational databases management systems which usually use 

SQL language are not designed for querying rapid and continuously flowing data (Li 

& Manoharan, 2013). These data normally come in different varieties such as 

structured, semi-structure and unstructured  (Babcock & Babu, 2002; Dissertation, 

2006; Terry, Goldberg, Nichols, & Oki, 1992). NoSQL are designed to overcome the 

limitation of RDBMS by allowing data access based on predefined access primitive 

with its features such as schema-less, scale-up (Li & Manoharan, 2013), to handle 

both streaming data and real time data (Gupta, Gupta, & Mohania, 2012).  

Several studies have been conducted to evaluate the performance of NoSQL database 

on streaming data by using Hadoop. Example, a study conducted by (Aniceto et al., 

2015) indicates that Cassandra has better performance of about 95% compared to 

other NoSQL Databases. Also, (Datastax, 2015; Gandini & Gribaudo, 2014) use 

Hadoop technology to compare HBase, MongoDB, Neo4j and Cassandra.  

Despite of the benefits observed in apache Spark on streaming data, a study is hardly 

found that have evaluated the performance of NoSQL databases by integrating it 

with Spark framework.  In response to the matter of streaming data, this study 

intended to evaluate the performance of NoSQL Database on streaming data by 

incorporate Cassandra and HBase as NoSQL Databases, with Apache Spark as data 

link and continuous data from twitter social network. 
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1.1.5 Objective 

1.1.5.1 Main Objective 

The main objective of this study is to evaluate the performance of NoSQL databases 

(Cassandra and HBase) from columnar family against streaming data. 

1.1.5.2 Specific Objective 

1. To identify performance metrics for evaluating Cassandra and HBase 

databases on Streaming Data. 

2. To assessing the performance of Cassandra and HBase on Streaming data 

using Apache Spark 

3. To propose which of the two NoSQL database is most suitable for streaming 

Data using Spark. 

1.1.6 Research questions 

1. What are the performance metrics for evaluating Cassandra and HBase on 

Streaming data?  

2. How does Cassandra and HBase perform on streaming data using Apache 

Spark? 

3. What is the appropriate NoSQL database for streaming data with Apache 

Spark.  

1.1.7 Purpose of the study 

The purpose of this experimental study was to report on the performance analysis 

methodology and results after evaluation by looking the correlation between NoSQL 

Databases (Cassandra and HBase) with continuously Streaming Data from social 

network information‟s generated by “twitter streaming API” with incorporation of 

Apache Spark. NoSQL Databases (Not only SQL) are defined as the class of 
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Database Management System (DBMS) that do not follow all the rules of a relational 

DBMS and cannot use ancient SQL to query data, it is usually used in very larger 

databases which are explicit at risk of performance downside caused by limitation of 

RDBMS. Additionally, in this study streaming data was defined as data that 

generated endlessly by thousands of data sources which usually send in the data 

records at the same time and in tiny size (order of kilobytes) – information from 

social networks. 

1.1.8 Significance of The Study 

The research might give info on the issue of NoSQL Databases technologies notably 

on the properties, categories, and characteristics. Further, this study would even be a 

review on the NoSQL information technologies gift. The study would be helpful to 

the Academician and Students as this study enhance the information on NoSQL 

information, Apache Spark, and Apache Storm technologies. Furthermore, this study 

would be beneficial to the system administrators and software developers as the 

study would provide necessary information regarding the performance on NoSQL 

databases on Streaming Data, additionally facilitate analyst on choosing the most 

effective suit technology for fast result on data analytics throughout decision making. 

Also, this study would offer a baseline info regarding with performance of NoSQL 

database particularly those from columnar family on streaming data using Apache 

Spark and Apache Storm technologies. 

1.1.9 The structure of the thesis 

The rest of the thesis is organized in the following chronological order; chapter two 

gave enough details on what others have said about N0SQL databases evaluation, 

Apache Spark, ingestion tools, data analytics layers and Cassandra vs HBase 
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evaluation. Chapter three covered the methodology part (experimental set-up, 

implementation, analysis and planning and cost). Chapter four is about findings and 

conclusion and the last chapter explained about summary, conclusion and future 

work on the field of NoSQL Database evaluation. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

A literature review discusses revealed info in a very explicit discipline at intervals of 

a period. It provides a new interpretation of previous material or mix new with 

previous interpretations. Depending on matters, the literature review could valuate 

the supply and recommendation of reader on the foremost pertinent or relevant. The 

focus of a literature review is to summarize and synthesize the arguments and ideas 

of others while not adding new contributions.  

In this chapter, critical review and summary of various concepts related to the 

streaming data and database as well as various empirical literatures which concerned 

with evaluating NoSQL Database in terms of throughput, latency and Scalability. 

The chapter categories sub-themes as ingestion tools for those tools used for data 

captured, an integrated layer as data link layer, NoSQL database evaluation, the 

evaluation of HBase and Apache Cassandra as our focus of this study, and lastly is 

the research gap found after reading several literatures. By review different studies, 

the objective (1) answered from this chapter.  

2.1 Conceptual definition  

The following definition used in this study as it written unless defined otherwise by 

the researcher. 

Apache Spark; is an open-source cluster computing framework for big data 

processing. It has emerged as the next generation big data processing engine, 

overtaking Hadoop MapReduce computation strategies of big data. (Shanahan & 

Dai, 2015) 
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Spark Streaming is an extension of the core Spark API; it allows integration of real-

time data from disparate event streams (Ranjan, 2014). But in this study streaming 

data was defined as data that generated endlessly by thousands of tweets which 

usually send in the data records via Spark at the same time and in tiny size (order of 

kilobytes) which are captured after every 5 seconds, 10 seconds, 5 minutes and 10 

minutes. 

Apache Cassandra is an open source distributed database system that is designed for 

storing and managing large amounts of data across commodity servers. Can serve 

both real-time operational data store and streaming data (Apache Software 

Foundation). 

Apache HBase is a column-oriented key/value data store built to run on top of the 

Hadoop Distributed File System (HDFS) (Apache, 2013). 

Hadoop is an open source, Java-based programming framework that supports the 

processing and storage of extremely large data sets in a distributed computing 

environment (Apache Software Foundation) 

2.2 Related Work  

2.2.1 Tools for Ingestion 

Gathering of information has been a vital part for any developing and developed 

business companies, institution and organizations. Different tools have been used to 

capture a real-time streaming and offline data. Wireshark (“Wireshark · Go Deep.,” 

2017) tool has been doing tremendous in capturing data from live network and file 

on disk. Metasploit (Holik & Horalek, 2015; “Penetration Testing Software | 

Metasploit,” 2017) used to capture data for security purpose specifically for research 
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and penetration test of the live or simulation test (Holik & Horalek, 2015; Nicoll, 

2011) while snort used for intrusion detection for live network(Roesch, 1999). While 

most of the evaluation of NoSQL Databases have been done using Yahoo Cloud 

service Benchmark (YCSB) (Barata, 2014; Cooper, 2010, Gandini & Gribaudo, 

2014, 2014; Sergey Bushik, 2012; Veronika Abramova, 2014) as their data ingestion 

tool based on cloud computing services. In this study, a twitter sentimental  analysis 

mechanism for data ingestion from twitter social network (Agarwal, 2011a, 2011b; 

Go, Huang, & Bhayani, 2009) was used. Researcher decided to use twitter because it 

has become the most social network for people to express opinions and views on 

different sectors which generate the burst amount of volume of data per time. The 

study conducted by (Adams & McCorkindale, 2013; Wang, Can, Kazemzadeh, Bar, 

& Narayanan, 2012) use twitter real-time sentimental analysis for U.S presidential 

election.  

2.2.2 Data Analytic Layer 

An integrated layer for ingestion streams, storage data, user interface and deep 

analytics is a crucial layer which use different technologies. IBM Streams (“IBM 

Streams,” 2016) is a platforms analytics tools used to correlate and analyze 

information which comes from data streams  sources. (Nabi, Wagle, & Bouillet, 

2015) conducted an integration of IBM infosphere with YARN on NoSQL Database 

tried to capture streaming data, (Yulevich, Pyasik, & Gorelik, 2012) use its in 

detection of motion data. (Biem et al., 2010; Gedik & Andrade, 2012) use infosphere 

on streaming data. (Taylor, 2012) specify that a data link layer “Oracle Real Time 

Decision” can improve the quality of organization decision. The most useful  Data 

Analytics layer used for evaluation of NoSQL Database is Hadoop (White, 2012) 

which provide a Scalable and reliable platform for both storage and analysis. Hadoop 
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enable several processing model such as YARN (Kumar Vavilapalli et al., 2013) and 

MapReduce (Eric Redmond, 2012) which access data by batch processing. 

Although, Hadoop is most useful for evaluation of streaming data (Gokavarapu, 

2010) but it take a lot of time during data process, thus, in this study, the researcher 

was using an open source platform  from Apache foundation which are developed 

specifically for real time data processing capability, called Apache Spark. 

2.2.3 NoSQL Evaluation 

A study performed (Datastax, 2015) on NoSQL Databases when evaluation 

CoachBase, MongoDB, HBase and Cassandra and results showed that Cassandra 

was better in terms of performance compared to the rest. (Klein, 2015) a case study 

of NoSQL Database evaluation among Cassandra, MongoDB and Riak resulted on 

Cassandra to have best throughput performance with highest latency while 

MongoDB was lower in performance throughput. Other authors who studied about 

evaluation of NoSQL Database include (Fiannaca & Huang, 2015; Gandini & 

Gribaudo, 2014; Kalakanti, 2015; Sharma & Tim, 2015; Sukhdev, n.d.; Veronika 

Abramova, 2014). Although the evaluation of NoSQL database has been conducted 

with many research or academician, but this study found a performance comparison 

between Cassandra and HBase on Streaming Data using special distributed 

integrated data link for streaming data namely Apache Spark.   

2.2.4 Cassandra Vs HBase Evaluation 

Cassandra was developed by Facebook as an open source distributed database 

management system in july,2008 (Cassandra, 2016) and later become part of Apache 

Software foundation in march,2009 (Cassandra, 2016). Apache HBase (“Apache 

HBase – Apache HBase
TM

 Home,” 2017) is a distributed NoSQL database build on 
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top of Hadoop. Unlike  relational databases, Cassandra store data in structured, semi-

structured and unstructured format (Barata, 2015) without affecting the performance 

of database. Cassandra is Scalable, high available and fast (Barata, 2015) in query 

execution. Compared to MongoDB and PostgreSQL, Cassandra was indicated to be 

the best database (Fiannaca & Huang, 2015) where their solutions rely on RAM and 

CPU cores. The study conducted in 2015 towards the major NoSQL Databases 

(Cassandra, CouchBase, HBase and MongoDB) (Datastax, 2015), Apache Cassandra 

was the best in both throughput by workload and Average Latency by workload. 

(Gokavarapu & Qiu, n.d.) compare HBase and Cassandra in terms of language 

written, license, protocol, tradeoff and usage, table 1 (Ayush, 2014) indicate some of 

the comparison between Cassandra and HBase. It was observed that HBase was 

better on Optimized Batching compared to Cassandra by 8% while Cassandra has 

higher latency by 12% (Kalakanti, 2015). In this study, researcher compared their 

throughput performance on handling streaming data.  
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Table 2. 1: The comparison between Cassandra and HBase 

Parameter HBase Cassandra 

Database type Column Oriented Data 

Store 

Column oriented 

Data store 

Development language Java Java 

License Open Source Open source 

Works on Operating system Linux, Unix, Windows BSD, Linux, OS X, 

Windows 

Database schema Used Schema-less Schema-Less 

Predefined data types Yes Yes 

Secondary indexes No Restricted 

Structure Query language No No 

CAP Theorem Consistency, Availability Availability,Partition 

Tolerance 

Application Programming 

Interface 

Java API, REST HTTP 

API, Thrift 

Proprietary protocol 

Consistency Immediate Immediate and 

eventual 

Mainly used for  Read Write 

Apache Spark Through use of Zookeeper 

and Hadoop 

Datastax 

Single Field Indexes Yes Yes 

Multi key index No No 

Partitioning  Dynamic Sharding 

Rebalancing of Nodes in 

Failure 

Automatic Automatic 

Compression of data Yes yes 

Language used for 

programming 

Java,Python and Scala Java, Python,and 

Scala 

Triggers No No 

Foreign keys No No 

JOIN Concept No No 

Transaction No No 
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Concurrency Yes Yes 

Durability Yes Yes  

 

Several metrics has been used to evaluate database system includes throughput, 

latencies and response time (Datastax, 2015) , RAM and CPU usage (Fiannaca & 

Huang, 2015). This research based on checking the I/O performance of the database 

where throughput and latency used as testing metrics.  

 

2.3 Research Gap 

Nowadays, NoSQL database has shown to have more advantages of use compared to 

RDBMS (Li & Manoharan, 2013), this indicates that, NoSQL databases should be 

adapted and used in several sectors. While the continuous flowing of data is essential 

to be measured and stored in NoSQL databases, several studies reviewed show that 

the data link technology used are not designed specifically for measuring real-time 

and continuous flowing of data (Eric Redmond, 2012; Kumar Vavilapalli et al., 

2013; White, 2012). Question of whether the evaluation of NoSQL database using 

Hadoop technology have limited effect on streaming data has been elaborated. In this 

dissertation, researcher decided to evaluate the performance of NoSQL databases 

(Cassandra and HBase) on streaming data by means of Apache Spark as data link 

layer. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

It is important to know the environmental details where the experiment has been 

conducted to came out with the valid result. The chapter, gives details about Study 

setting, Design research, Approach used, Planning and Cost of the study, experiment 

setup, and implementation. This chapter evaluated the metrics chosen in chapter 2 

thus objective (1) and (2) considered to be accomplished. 

Table 3. 1: Objective to appropriate Approaches 

Questions Objectives Approach 

What are the performance 

metrics for evaluating 

Cassandra and HBase on 

Streaming data?  

To identify performance metrics 

for evaluating Cassandra and 

HBase databases on Streaming 

Data. 

Literature review 

(Document 

analysis) 

How does Cassandra and 

HBase perform on 

streaming data using 

Apache Spark? 

To assessing the performance of 

Cassandra and HBase on 

Streaming data using Apache 

Spark 

experiment 

What is the appropriate 

NoSQL database for 

streaming data with 

Apache Spark.  

To propose which of the two 

NoSQL database is most 

suitable for streaming Data 

using Spark. 

experiment 

 

3.1 Research setting  

Study has been carried out at Computer Laboratory found at Ruaha Catholic 

University. Ruaha Catholic University is a private institution which provide 

academic service to the public. Provision of academic service and presence of the 

Computer laboratory was one of the reason why the researcher chosen that 
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institution. In this study, researcher chose Ubuntu 17.04 as operating system for 

platform. All the processes have been tested on 64-bit Ubuntu 17.04 OS and may 

differ on another Linux kernel-based OS. Other tools include; Apache Spark Version 

1.6 pre-built for Apache Hadoop 2.6, Scala language version 2.10.5, Apache 

Cassandra Version 2.0.6, Apache HBase version 1.2.6, Java-8-openjdk.  

3.2 Research Approach 

This study involved generation and computation of massive volume of data which 

came from Twitter social network to a standalone platform. To deal with these 

continuous flow of data, a quantitative research approach as suggested by (Creswell, 

2014; L. Christensen, 2015) when deals with numerical and countable data was used. 

Since Quantitative approach are used to find the relationship between variables and 

constants, this brings a reasonable means for the same approach to be used in this 

study when evaluating the performance of two databases. 

Since, the study involved the calculation and finding the average of each experiment 

and control group, the descriptive statistical approach as part of quantitative 

approach was used. The descriptive statistics was used, and numerical data presented 

in both numeric and graphs using frequency distribution and scatter graph. 

Frequency distribution used to show the uniqueness of data rank values and the 

frequencies of both databases used for evaluations. Also, researcher used scatter 

graph as evaluator mechanism to bring a clear graphical representation of the 

relationship between databases on handling streaming data. Only when mentioned a 

researcher used a line graph to show statistical significant between the databases. 
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3.3 Research Design 

In this study, the strong experimental design has used. The reason behind was due to 

giving a researcher control over the situations in terms of databases selected, in terms 

of which gets treatment condition and in terms of the amount of treatment condition 

that each database received.  This can be classified as having controlled experiments 

in the researcher management by having confidence in the relations observed 

between the independent (throughput and latency) and dependent variable (iteration 

time). 

 

Figure 3. 1: Strong Experiment Design 

Source: Researcher data 

 

3.4 Research method and Data Collection 

3.4.1 Literature review 

To address question (1) several studies were reviewed to determine the performance 

metrics for HBase and Apache Cassandra databases. Recent and relevant studies 

from different journals, papers, thesis, articles have been passed through for a 

purpose of metrics searching. Some of the key terms observed includes SQL, 
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NoSQL, HBase, Cassandra, performance evaluation, performance comparison and 

database ranking. 

The following table indicated number of performance metrics as used by different 

researcher to evaluate database 

Table 3. 2: Metrics evaluations 

METRICS SQL DATABASES NoSQL DATABASES 

 MySQL Postgre 

SQL 

SQL 

Server 

Cassandra MongoDB HBase 

Throughput 13 12 10 15 17 15 

Latency 14 14 17 21 19 23 

Response 

time 

9 8 46 12 16 11 

CPU usage 15 16 15 5 7 4 

Source: Researcher data 

3.4.2 Streaming Simulator  

To answer Question (2) and (3), data must be collected from streaming simulation. 

To help simulation of streaming data from Twitter Streaming API, Apache Spark 

was used, since it has mechanism to deals with streaming data. (Maarala & 

Rautiainen, 2015). Data source was from  Twitter Social Network with Twitter API 

(Benhardus & Kalita, 2013) due to its ability to generate huge amount of data at a 

time (Bifet & Frank, 2010). Captured data was stored in either Cassandra or HBase 

database using Apache Spark data link layer and analyzed. 
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Figure 3. 2: Streaming data from different source to persistence storage 

(Guller, 2015) 

Several machine can be used to simulate experiment but for the case of this study, 

computer has been used to simulator machine (Jacobs, 1993) which can perform and 

manage scientist experiments. 

3.4.3 Experimental setup environment 

All testing performed on standalone platform which was reasonable for testing 

NoSQL databases. To minimize the effect of CPU, Memory usage and I/O 

variability, researcher performed each iteration on 20 successively days. The tests 

conducted on a machine with 8 GB RAM, 2 CPU Cores, a single volume of 500 GB 

of HDD local storage. Environmental tools used for coding was IntelliJ IDEA 3.0 

Community edition, Apache Spark 1.6.0 as a data link layer, Scala 2.11.5 as a 

programming language, twitter Streaming API as congestion layer and Cassandra 

3.10, HBase 0.92.0 as database storage. 

3.4.3.1 IntelliJ IDEA setup 

Intellij IDEA Community was chosen as a platform tools for connecting different 

packages, software‟s, gateways, libraries by using Scala language. The minimum 
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requirements which was considered for installing Intellij IDEA was 8GB 

RAM,500GB hard disk and 1024 * 768 screen resolution.  

IntelliJ IDEA Community was downloaded from its website and unpacked to the 

/opt directory 

sudo tar xf -*.tar.gz -C /opt/ 

to run Intellij Idea for the first time always switch to /bin directory cd opt/-*/bin  and 

run from there by type idea.sh 

3.4.3.2 Apache Spark Configurations 

Spark processes run under Java Virtual Machine (JVM) thus java is pre-installed 

before Apache Spark in the machine. The following command are used to install 

Java in Ubuntu machine 

$sudo add-apt-repository ppa:webupd8team/java 

$sudo apt-get update 

 

Figure 3. 3: OpenJDK installation 

Source: Researcher data, 2017 

Because Apache Spark is written in Scala language, the Scala should be installed 

first. Thus, the researcher installed Scala version 2.10.5 and set its folder to the opt 

directory. The following are commands used to install Scala in ubuntu 16.04. 

note: In order to install Spark, we need to make sure, that Java 7+ and Scala 2.10.x 

is up and running 
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3.4.3.3 Scala Installation 

sudo apt-get remove Scala-library Scala 

wget http://www.Scala-lang.org/files/archive/Scala-2.10.5.deb 

sudo dpkg -i Scala-2.11.5.deb 

sudo apt-get update 

sudo apt-get install Scala 

 

After install Scala, researcher set up the its path to the /opt directory with the 

following command 

export SCALA_HOME=/opt/Scala/Scala-2.10.5 

export PATH=$SCALA_HOME/bin:$PATH 

After download Apache Spark, it must be extracted to the preferred directory, where 

in this project the /opt directory was chosen throughout. It is important to set the 

path for Spark directory 

 

Figure 3. 4: Apache Spark setup 

Source: Research data 
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3.4.3.4 Twitter Streaming API Setup 

Researcher use Twitter Streaming API since it provides, RESTful and Streaming 

data API endpoint in order to retrieve published data. REST API used to obtain 

specific search and posted new tweets while the Twitter Streaming API was used to 

retrieve every new tweet as soon as it is published. This process has been chosen for 

security purpose as (Benhardus & Kalita, 2013; Morstatter, Pfeffer, Liu, & Carley, 

2013) suggested. 

Twitter4j library was used in this experiment to connect with twitter streaming API 

where streams were accessed via HTTP POST request, by filtering user topic and 

English language. The Authentication methods (OAuth) must be used to provide 

authorized access to twitter API. Twiiter4j was implemented in Scala by using 

Maven as shown below. 

<!-- https://mvnrepository.com/artifact/org.twitter4j/twitter4j-core --> 

<dependency> 

<groupId>org.twitter4j</groupId> 

<artifactId>twitter4j-core</artifactId> 

<version>4.0.6</version> 

</dependency> 

 

<!-- https://mvnrepository.com/artifact/org.twitter4j/twitter4j-stream --> 

<dependency> 

<groupId>org.twitter4j</groupId> 

<artifactId>twitter4j-stream</artifactId> 

<version>4.0.6</version> 

</dependency> 

To prevent misuse of information from twitter, there are some credential information 

about the user which are taken and must be included in the application program in 

order to receiver streaming of data from twitter. 
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Figure 3. 5: Twitter credential information  

Source: Researcher data, 2017  
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The architecture of Spark Streaming Configured for this experiment process is seen 

in figure 3.6.  

 

Figure 3. 6: Spark Streaming model for processing the Twitter Stream 

Source: Researcher data, 2017 

Tweets were received and temporary stored inside the local queue, the writing 

operation is triggered by considering the setup time interval. Time was set at interval 

of 5sec, 10sec, 5min and 10 minutes. Once the time end, it automatically writes the 

tweet from queue to the database. Although the interval may seem as batch process 

by wrote the tweet at once, but the time is very minimum for batching operation also 

to observe the writing speed of each database in small amount of time interval and 

overcome the fast writing as much speed as the tweets received at fast rate.  

3.4.3.5 Database Configurations 

The new version of both Apache Cassandra and Apache HBase was chosen and 

selected among NoSQL Databases for benchmarking and well configured as 

required. Each of the two databases were installed on top of the Ubuntu 17.04 

Operating system. While each database was configured to work as a single cluster 
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where replication was not considered in the process unless said, they both received a 

Spark streaming of data from Twitter social network. 

3.4.3.5.1 Cassandra 

A single node Cassandra cluster was setup to receive Spark Streaming with different 

interval of time for consistent hashing and receiving tweets to a node, Spark 

Streaming was bundled with Apache Cassandra 2.0.6 

Cassandra was installed by using a tarball from the Cassandra website. The 

murumu3partitioner partitioning strategy was used to improve the performance of the 

system by implementing a technique known as Consistent hashing. 

Only one copy of data of each row on one node was maintained by setting the 

replication factor to 1. The Status of the node was observed and monitored using 

nodetool utility. Table 3.3 provide important configuration details of Apache 

Cassandra. 

Table 3. 3: Cassandra Configuration Details 

Parameter Values 

Concurrent read Default (32) 

Concurrent write Default (32) 

Initial token Token generated based on Mumu3Partition hash 

values 

Partition Default (mumur3partition) 

Key_cache_size_in_mb Default 100MB 

Seed provider Spark streaming data 

 

Cassandra was downloaded from its website cassandra.apache.org/download where 

the version 3.10 was used for the purpose of this experiment. The /opt directory was 
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used to extract Cassandra package and use .bashrc command to set the path for 

Apache Cassandra database. 

export CASSANDRA_HOME=/opt/cassandra-3.10 

export PATH=$CASSANDRA_HOME/bin:$PATH 

Cassandra must be started from terminal by type 

cd $CASSANDRA_HOME/bin 

it‟s better to confirm if Cassandra service is up and running by checking the status of 

cluster by using nodetool utility where UN means up and running. 

$ sudo nodetool status 

 

Figure 3. 7: Nodetool utility  

Source: Researcher data, 2017 

for the case of this research a keyspace called “cycling” was created with the table 

named “tweets” with name id,tweet” and timein. 
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Create KEYSPACE cycling WITH REPLICATION = 

{„class‟:‟simpleStrategy‟,‟replication-factor‟1}; 

CREATE table tweets( 

 id varchar, 

tweet varchar 

timein varachar 

PRIMARY KEY(id)); 

Cassandra connector from Datastax was used to connect Cassandra database and 

Apache Spark with the help of Spark class known as Streaming Context which allow 

a Spark streaming from twitter to connect with Spark cluster. This help to get data 

from and to write to the Cassandra databases. 

3.4.3.5.2 Apache HBase 

The HBase cluster was setup to receive streaming of Data from Twitter social 

network using Spark streaming. The whole configuration optimized by Zookeeper 

and HDFS to run Apache HBase 0.92.0 on ubuntu 17.04 OS. It was split as shown 

below. 
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3.4.6.2.1 HBase installation 

1. Download the hbase zip file from apache website 

2. move the downloaded file to the /opt directory and extract them 

3. open the terminal and move to conf folder 

cd /opt/Hbase-1.0.0/conf 

4. researcher opened and edit the hbase_env.sh 

dani@dani:/opt/hbase-1.0.0/conf $vi hbase-env.sh 

5. set the hbase path 

6. to start the HBase service we use the following command 

.start-hbase.sh 

7. to start the hbase shell using command ./hbase shell 

 

 

 

Figure 3. 8: Starting HBase via Command tool 

Source: Researcher data, 2017 

Note: before starting the HBase, Hadoop service and Zookeeper were started, and a 

Spark-on-HBase connector was used to connect between Apache Spark and HBase. 

mailto:dani@dani
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3.4.4 Dataset  

The researcher, construct his own dataset which fit the need of the research when 

considering the structure and nature of the storage. Twitter contain a lot of 

information‟s, and this has been proved by (Agarwal, 2011a) on his study. Some of 

the information per single tweet are language, coordinates, like and unlike, number 

of likes, number of re-tweets, username, user id, description follower and image.  

Only English text start with (#) was taken because majority of users use it to connect 

the idea of the same interest. 

 
Figure 3. 9: Data Structure of tweets 

Source: Researcher data, 2017 

 

3.4.5 Data Size 

Due to receiving only English text which starts with hashtags, Researcher limit the 

content of the tweet. According to UTF-8 characters, a character is represented by 32 

bits which is the same as 4 bytes. Thus, if at once, tweet of maximum length of 120 

characters received means a size of 800 bytes, so for average of 41 events per each 

1ms I expected to have 

800bytes * 41 

=32800bytes/events/ms 
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Thus, to understand the actual data size of the average tweet size 

                   
                   

                                  
 

3.4.6 Data received Rate 

The figure 4-2 and 4-3 show the received rate of twitter as it passed through Spark 

Streaming via twitter Streaming API. The figures indicate events when triggered 

after 5seconds and the process were run for 8 minutes and 17seconds only with the 

average of                and 11 minutes with the average receiving rate of 8.24 

events/sec.  

3.4.7 Experimental Scenario 

The metrics performance identified at objective (1) help to go further with this study 

where the following scenario were used; Data source from twitter was collected, pass 

through Spark streaming and later stored at Cassandra or HBase. The write and read 

operations occurred at both databases. The performance of both databases was 

evaluated by Spark-R as the streaming data continuous.   
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Figure 3. 10: Simulation scenario for Cassandra 

 

Figure 3. 11: Simulation scenario for HBase 
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3.4.7.1 How it works 

The basic idea for Spark and Cassandra was to deploy both Spark and Cassandra 

cluster in a single computer simulation which has been done and came out with the 

results.  Cassandra used for purpose of storing streaming data which pass through 

Spark. Spark Worker nodes mapped to Cassandra and do a data process. 

Spark Streaming section are designed to handle Streaming Data from Twitter 

Streaming API. When the tweets arrive, are served first in spark memory to 

overcome the issue of data loss which could be caused by network traffic or network 

fractuation. Spark Worker understand how to read data from shuffle. 

A transformation mechanism allows operations of streaming data from shuffle, after 

that data are served into Cassandra for further analysis. 

A very simple schema for Cassandra are created for storing Streaming data.  

Create KEYSPACE cycling WITH REPLICATION = 

{„class‟:‟simpleStrategy‟,‟replication-factor‟1}; 

CREATE table tweets ( 

 id varchar, 

tweet varchar 

timein timestamp 

PRIMARY KEY(id)); 

The table cycling is quietly simple with three columns, where the tweet column used 

for tweets as it arrives and controlled with a unique timein identifier which is 

essential for clustering key as the data stored in Cassandra.  

 val now = new Date (); 

sc.cassandraTable ("cycling", "tweets") 

. select (“tweet”, "id") 

. where (“timein”, now) 

. filter (includedStatuses contains .getLang ()==lang) 
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. keyBy (row => (row.getString ("tweet"))) 

. map { case (key, value) => (key, value.getInt ("id")) } 

. reduceByKey(_ + _) 

. map { case (tweet) => (tweet, now) } 

. saveToCassandra("cycling", "tweet")) 

Scala code above produce reasonably results with integration of Spark and 

Cassandra. 

val hbaseConfiguration = (hbaseConfigFileName: String, tweet: String) => 

{ 

val hbaseConfiguration = HBaseConfiguration.create() 

hbaseConfiguration.addResource(hbaseConfigFileName) 

hbaseConfiguration.set(TableInputFormat.INPUT_TABLE, tweet) 

hbaseConfiguration 

} 

val rdd = sparkContext.newAPIHadoopRDD( 

hbaseConfiguration("/opt/hbase/hbase-site.xml", "tweets"), 

classOf[TableInputFormat], 

classOf[ImmutableBytesWritable], 

classOf[Result] 

) 

import scala.collection.JavaConverters._ 

rdd 

.map(tuple => tuple._2) 

.map(result => result.getColumn("tweet".getBytes(), 

"columnQualifier".getBytes())) 

.map(keyValues => { 

keyValues.asScala.reduceLeft { 

(a, b) => if (a.getTimestamp > b.getTimestamp) a else b 

}.getValue 

}) 

To enable apache Spark with HBase, the RDD construction in Spark has been 

configured by setting appropriate configuration measure in hbase-site.xml to read 

table “tweet”. By having RDD, made easy for HBase operations to handle Streaming 

from Spark. 
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The RDD load the data to and from the table “tweet” as “ImmutableBytesWritable” 

to obtain the exactly number of tweets. 

Load an RDD of (ImmutableBytesWritable,tweet) 

The getColumnCells return all the collections of tweets with the timestamps when 

the method getColumn executed.  

3.5. Data processing and Analysis 

In this study, real time streaming data was processed by using Apache Spark and 

analyzed using Apache Spark-R and Microsoft Spreadsheet. 

3.5.1 Experimental analysis 

The experimental method used to find the relationship between Cassandra and HBase 

by evaluating them on handling Spark streaming data when considered Throughput 

and Latency time as metrics. The analysis was based on finding the average in both 

write and read performance when the script set to a particular time. Later, the 

experimental analysis based on only read or write performance of the databases are 

taken. 

3.5.1.1 Benchmark Results Data 

3.5.1.1.1 Average benchmark results, triggered after every 5 seconds 

The average results for Cassandra and HBase with a trigger time of every 5 seconds, 

indicate that Cassandra to have a higher latency time of 6.08 ms and HBase have 

2.99 ms. 
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Table 3. 4: Load Records-Average evaluation after 5seconds 

Load Records-Average evaluation after 5 sec 

Database Throughput Average latency 

Cassandra 17577.0789 6.08871577 

HBase 37577.30471 2.99781237 

 

3.5.1.1.2 Average benchmark results, triggered after every 10 seconds 

The Average results for 20 days workload which evaluated the throughput and 

latencies of Cassandra and HBase. The trigger time was 10 seconds after each 

iteration. As section 3.5.1.1.1 show, Cassandra has highest throughput as compared 

to HBase. 

Table 3. 5: Load Records-Average evaluation after 10 seconds 

Load Records-Average evaluation after 10 seconds 

Database Throughput Average latency 

Cassandra 22255.2778 5.401741321 

HBase 75156.60958 3.867572121 

 

3.5.1.1.3 Average benchmark results, triggered after every 5 minutes 

When the load increase leads to the increase in latencies to both read and write of 

Cassandra and HBase. The average Cassandra has 3338921 operations per seconds 

while HBase has 2 times than of Cassandra. 

Table 0-1: Load Records-Average evaluation after 5 minutes 

Load Records-Average evaluation after 5 minutes 

Database Throughput Average latency 

Cassandra 3338291.671 81.26119815 

HBase 75156.60958 52.3681736 
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3.5.1.1.4 Average benchmark results, triggered after every 10 minutes 

The average of data collected after every 10 minutes for both 100 read and write in 

20 days are indicated at table 3.6.  

Table 3. 6: Load Records-Average evaluation after 10 minutes 

Load Records-Average evaluation after 10 minutes 

Database Throughput Average latency 

Cassandra 6475291.78 83.3387891 

HBase 22371457.48 72.66789101 

 

3.5.1.1.5 Read (100%) only workload, triggered after every 5 seconds 

A total number of 10 iterations was used to collect data in which the trigger time was 

set after every 5 seconds. This procedure was conducted for almost 20 days 

successively. Heavy read was performed in both Cassandra and HBase for 100% as 

data received.   

Table 3. 7: Load Records-Average evaluation after 5 seconds 

Average throughput and latency after every 5sec for 20 days (read) 

database 

Iteration 

number 
Throughput 

Average 

Latency 

target 

throughput 

Cassandra 

2 1890.529001 2.196017567 2000 

4 3767.94411 2.887767321 4000 

6 5978.80712 4.345678912 6000 

8 7841.99431 6.126189933 8000 

10 9852.15736 6.930014901 10000 

HBase 

2 1752.00131 1.63291145 2000 

4 3091.22791 1.85971245 4000 

6 5293.11349 1.36371143 6000 

8 5163.18349 2.77391284 8000 

10 5401.17933 2.93374995 10000 
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3.5.1.1.6 Write (100%) only workload, triggered after every 5 seconds 

As in section 3.5.1.1.5, data was written as it came directly from spark streaming. 

Apache Spark has the capability of storing number of data into memory until the 

trigger time after every 5 seconds reached. Both throughput and latencies are 

collected and analyzed. 

Table 3. 8: Load Records-Average evaluation after 5 seconds 

Average throughput and latency after every 5sec for 20 days (write) 

Database 

Iteration 

number 
Throughput 

Average 

Latency 

Target 

throughput 

Cassandra 

2 1890.529001 1.798087726 2000 

4 3767.94411 2.483267381 4000 

6 5978.80712 3.547878982 6000 

8 7841.99431 6.126789945 8000 

10 9852.15736 6.930014901 10000 

HBase 

2 1752.00131 10.33891175 2000 

4 3091.22791 10.45979243 4000 

6 5293.11349 10.46379946 6000 

8 5163.18349 10.77393284 8000 

10 5401.17933 10.98374997 10000 

 

3.5.1.1.7 Read (100%) only workload, triggered after every 10 seconds 

To insure consistency of data collection, data load was increased to 2 times the 

collected data as indicated in sections 3.5.1.1.6 and 3.5.1.1.7. Trigger time for read 

data was set after every 10 seconds. Number of iteration was 10 for both Cassandra 

and HBase. 
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Table 3. 9: Load Records-Average evaluation after 10 seconds 

Average throughput and latency after every 10sec for 20 days (read)  

Database 
Iteration 

number 
Throughput 

Average 

Latency 

Target 

throughput 

Cassandra 

2 498.529001 7.814 500 

4 997.94411 14.564 1000 

6 1433.80712 13.897 1500 

8 1977.99431 12.987 2000 

10 2496.00131 12.0123 2500 

HBase 

2 482.9345 26.987 500 

4 911.4378 28.154 1000 

6 1230.437 24.873 1500 

8 1732.9834 28.983 2000 

10 1798.6921 29.342 2500 

 

3.5.1.1.8 Write (100%) only workload, triggered after every 10 seconds 

The write operations were performed as soon after the data was arrived in the 

Streaming platform from Twitter Streaming API. Each time the script trigger, the 

write operation was performed. Throughput and average latencies was collected for 

both Cassandra and HBase. 
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Table 3. 10: Load Records-Average evaluation after 10 seconds 

Average throughput and latency after every 10sec for 20days (write)  

Database 

Iteration 

number 
Throughput 

Average 

Latency 
target throughput 

Cassandra 

2 498.529001 1.423 500 

4 997.94411 3.335 1000 

6 1433.80712 5.768 1500 

8 1977.99431 4.66 2000 

10 2496.00131 5.01 2500 

HBase 

2 482.9345 12.994 500 

4 911.4378 14.967 1000 

6 1230.437 11.994 1500 

8 1732.9834 11.989 2000 

10 1798.6921 12.013 2500 

 

3.5.2.2.9 Read (100%) only workload, triggered after every 5 minutes 

When the workload increased by 50% and collected after every 5 minutes for 20 

days successively, the performance of Cassandra and HBase was affected. Read 

operations was conducted in each 5 minute obtained average throughput and 

Latencies for both Cassandra and HBase on Spark Streaming data. 

 

  



 

48 

Table 3. 11: Load Records-Average evaluation after 5 minutes 

Average throughput and latency after every 5min for 20days (read)  

database 

Iteration 

number 
Throughput 

Average 

Latency 
target throughput 

Cassandra 

2 1899.918 2.9287 2000 

4 3973.129 4.43995 4000 

6 5801.872 6.3994 6000 

8 7901.538 8.7892 8000 

10 8678.153 11.6794 10000 

HBase 

2 1955.99 1.3891 2000 

4 3768.635 1.6756 4000 

6 5601.652 1.8716 6000 

8 7583.678 1.9997 8000 

10 9101.647 1.9998 10000 

 

3.5.2.2.10 Write (100%) only workload, triggered after every 5minutes 

Data was collected and analyzed for write operation after every 5 minutes for 20 

days successively. Spark control the increase of size in memory before writing them 

to the database. When the trigger time of 5 minutes reached, the write operation 

occurs. Collected data in table below indicate the data collected and average 

throughput and latencies for both Cassandra and HBase. 
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Table 3. 12: Load Records-Average evaluation after 5 minutes 

Average throughput and latency after every 5min for 20days (write)  

Database 

Iteration 

number 
Throughput 

Average 

Latency 

target 

throughput 

Cassandra 

2 1899.918 1.391 2000 

4 3973.129 3.335 4000 

6 5801.872 5.689 6000 

8 7901.538 4.115 8000 

10 8678.153 6.325 10000 

HBase 

2 1955.99 11.998 2000 

4 3768.635 13.856 4000 

6 5601.652 20.258 6000 

8 7583.678 21.965 8000 

10 9101.647 23.756 10000 

 

3.5.2.2.11 Read (100%) only workload, triggered after every 10 minutes 

To maintain validity, workload was increased to 100% with read operations for 

100%. Average throughput and average latencies was collected for both Cassandra 

and HBase. In each iteration, average was taken and recorded. 
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Table 3. 13: Load Records-Average evaluation after 10 minutes 

Average throughput and latency after every 10min for 20days (read)  

Database 

Iteration 

number 
Throughput 

Average 

Latency 
target throughput 

Cassandra 

2 1999.216 21.3287 2000 

4 3938.5487 24.2395 4000 

6 5789.0215 25.0213 6000 

8 7899.3284 29.4586 8000 

10 9972.6589 34.8564 10000 

HBase 

2 1787.2567 57.695 2000 

4 3397.3201 61.562 4000 

6 5200.1275 69.458 6000 

8 7101.3615 77.0985 8000 

10 9081.2548 87.0536 10000 

 

3.6 Ethical Consideration 

Gathered data particularly from twitter social network were used for the intention of 

this study only and not otherwise, and only disclosure data to the public were taken.  

The researcher also uses his own account authentication to fetch streaming data from 

Twitter streaming API.  

3.7 External Validity 

According to (Cozby, 2015) the validity of research dissertation based on how well 

the instruments set at measuring the variables at a given study. For the purpose of 

this study, the experimental tools were set in appropriate way not to alter the results.  

The study was Strong experimental design which based on external validity. Each 

data was collected as the corresponding time match and averaging due to iteration 

time. To maintain an external validity, the results were compared often and later an 

average was be taken for each round. 
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3.8 Economic Planning and Costs 

3.8.1 Planning 

In order to achieve all the objectives as mentioned in chapter (1), all the tasks have 

been mentioned and estimation has been calculated. The Gantt diagram show in 

detail how the process has been performed since the beginning. The project was 

started in March 2017. 

At the beginning the research started with requirement analysis. The IDEA was to 

evaluate all NoSQL Databases on streaming data but due to time and cost limitation, 

only two Database were evaluated. The evaluation process was to run Cassandra and 

HBase on top of Apache Spark.  

The next step was to go through various literature review in order to come out with 

suitable metrics for evaluation. 

Steps after identification of metrics, was to design the architecture of the experiments 

and setting the main modules, configuring Apache Spark, Cassandra and HBase. 

Process has gone into three different stages. 

 Development of the Ingestion Data link layer (Stream processing 

application) 

 Development of Data Link Layer (Spark application using Scala 

Language) 

 Development of persistence storage focused on Cassandra and HBase. 

All those stages involved in depth understanding of technologies and developing the 

simulating application. 
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The final step of the research project was to perform the experiments and evaluate 

Cassandra and HBase in different time interval with different data size due to 

streaming time while using a single node to each database. 

3.8.2 Costs 

The cost is divided into two parts, which are development costs and infrastructure 

costs which include cost for both hardware and software.  

3.8.2.1 Development Costs 

Programming task is the job which can be done by a Software engineer. To write 

Scala code, Spark Code require in depth understanding and knowledge in each 

language.  

Thus, the average Cost for this thesis was approximately $10000 per month, for 12 

hours/day programme. 

Table 3. 14: Development costs 

Cost per month Number of Months Total 

$10000 4 $40000 

 

3.8.2.2 Infrastructure Costs 

This can be divided in both software and hardware costs. 

For this research, all software costs are free of charge since I used open source 

software‟s. The list below indicates software. 

 Apache Spark 

 Apache Cassandra 

 Apache HBase 
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 Intellij IDE community Edition – Scala IDE 

The hardware Cost was also zero since I used Computer present at Ruaha Catholic 

University Computer Laboratory. 
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CHAPTER FOUR 

FINDINGS AND DISCUSSION 

4.0 Introduction 

The chapter presents the findings and discussion for each question and objectives.  

4.1 Finding and discussion after Documents Analysis 

The following question were used to came out with evaluation metrics 

What are the performance metrics for evaluating Cassandra and 

HBase on Streaming data? 

In order to identify performance metrics used to evaluate Cassandra and HBase 

Databases, a deep learning of papers, thesis, journal was used. Researcher categories 

the evaluation in two groups: Relational and non-Relational databases. The metrics 

used are throughput and latency time and used for these results. The frequency 

distribution in figure 4-1 indicates and rank evaluated metrics. Because throughput 

and latency has been used frequently and for a larger number during database 

evaluation, this was the reason researcher use these two as evaluation metrics.   
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Figure 4. 1: Evaluation metrics 

Source: Researcher data, 2017 

 

4.2 Finding and discussion after Experimental Research study 

By considering the nature of the research, only two core parameters were 

considered, namely throughput and latency time for both read and write operations. 

In case of in-memory usage, input and output operations, the first approach was to 

consider the streaming of Tweeter data after every 5 sec, 10 sec, 5 min and 10 

minutes as indicated from figure 4-4 to figure 4-10. 

4.3 Data received Rate 

The figure 4-2 and 4-3 show the received rate of twitter as it passed through Spark 

Streaming via twitter Streaming API. The figures show the events when triggered 

after 5seconds and the process were run for 8minutes and 17 seconds only with the 

average of                and 11 minutes with the average receiving rate of 8.24 

events/sec 
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Figure 0-1: Receiving rate at interval of 5seconds for 8 minutes 

 

Figure 4. 2: Receiving rate at interval of 5seconds for 11 minutes 

4.4 Benchmark results 

Experiments were run on both Apache Cassandra and Apache HBase using Spark-R 

and with Scala script which helped to automate the process. Four different time 

intervals were used to run the workload into five different iteration. Only the 

workloads with 10 seconds interval time were set with target throughput of 

500,1000, 1500,2000 and 2500 ops/sec for both read and write operations while 

others, 5sec,5min and 10min were set with target throughput of 

2000,4000,6000,8000 and 10000. For each time interval, there was 5 iteration which 

was set as 2 iterations,4,6,8 and 10 iterations runs for 20 days which act as a trigger 

to allow a better read and write performance. 
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Figure 4. 3: Read (100%) only workload: 5 seconds for 20 days 

 

Cassandra‟s average Latency increase relatively exponential with increase in 

throughput. I can conclude that when Cassandra achieve overall throughput it also 

delivers highest average latencies which is 50% than that of HBase. The read 

performance of the HBase has improved with increase in throughput and this could 

be due to its to commit in memory. Thus, as the number of iteration increase the 

throughput stick to 30% while having low latency time. 
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Figure 4. 4: Write (100%) only workload: every 5 seconds for 20 days 

Cassandra lives up to its name and ready to perform write with considerably less 

latency than its read. Its performance increase as the workload increase although 

there a slightly increase in latency. HBase on the other hand, show a linear increase 

in throughput until when it reaches to 40% of the workload where it stacks on that 

mark as the workload increase. Although, HBase show better consistency on the 

throughput at the begging of the process but it has been starting with higher average 

latencies and this could be because of flush commit process which force the 

synchronous flush of the write buffer. 

 

Figure 4. 5: Read (100%) only workload: every 10 seconds for 20 days 

 

With 20% operations added as workload where by the trigger mechanism for read 

happened after every 10 seconds. Cassandra (2458 ops/sec) still has highest 

throughput while HBase shows the least throughput which is almost similar to the 
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experiment conducted after every 5 seconds. When reading streaming data, 

Cassandra seems to have highest latency (14ms) before start to decrease as the 

workload increase. HBase continue to face the same problem of highest latency as 

write-only workload in 5seconds-write although it shows good sign as the latency 

stop increasing at (24ms) as the workload increase.  

 

Figure 4. 6: Write (100%) only workload: every 10 seconds for 20 days 

 

In this experiment, the overall performance of Apache Cassandra continues to show 

good performance as the workload increase in write (100%) operation. Cassandra 

suffer from increase in average latencies time as the workload increase. Workload 

performance on HBase is slightly improving for small set of data and stop at 

(1879ops/sec) while its average latencies time decrease for small amount from 15ms 

to 12.9 ms which maintained that level as the workload increase. 
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Figure 4. 7: Read (100%) only workload: every 5minutes for 20 days 

Heavy read on a very larger data set, HBase show a best performance on both 

throughput and Latency time. Only the average latencies of 2ms maintained 

(increase linearly) for the whole workload from day one to the last day, this is one of 

its advantages in read operation (Jiang, 2012). The performance of Cassandra was 

affected by the exponential increase in latencies time. By 98% the performance of 

HBase was better compare to that of Cassandra on handling streaming data with the 

read of data after every 5 seconds in 20 consecutive days. 
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Figure 4. 8: Read (100%) only workload: every 5minutes for 20 days 

 

In this experiment, Cassandra (9200ops/sec) still highest throughput with low 

latency time compared to HBase which has high throughput with highest latency 

time. Cassandra (5msec) has smallest latency compared to HBase (24ms). Cassandra 

has slightly increase in average latencies time when doing write operation compare 

to how HBase increase. 
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Figure 4. 9: Write (100%) only workload: every 10 minutes for 20 days 

The last experiment was the read and write (100%) operations whereby it was 

desired to prove the performance of HBase over that of Cassandra. HBase show 

poor performance compared to Cassandra in terms of the response time since it 

delays are very high (over 50%) to that of Cassandra. Cassandra had the best 

throughput performance for large data sets, approximately twice the performance of 

that HBase had.  Figure 4.10 and 4.11 show the individual graph for response time 

and throughput for every 10 minutes in 10 iteration nodes for 20 days on handling 

streaming data. 
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Figure 4. 10: Average Latency time after every 10 minutes in 10 iterations for 

20 days 

The average latencies time between Cassandra and HBase in general show that, 

Cassandra has lowest average latencies time compared to HBase as the workload 

increases. While the increase of latencies time in Cassandra was almost linear, in 

HBase was exponential increment of average latencies time. 

 

Figure 4. 11: Throughput after every 10 minutes in 10 iterations for 20 days 

As the workload increase by 100% of streaming data flowing from Twitter 

Streaming API, there were high increase of throughput in Cassandra compared to 

that of HBase database. 



 

64 

CHAPTER FIVE 

SUMMARY, CONCLUSION AND FUTURE WORK 

5.0 Introduction 

This chapter looks into the dissertation objectives and establishes to what extent the 

study has achieved.  

5.1 Summary of the research objectives 

1. To identify performance metrics for evaluating Cassandra and HBase 

databases on Streaming Data. 

2. To assessing the performance of Cassandra and HBase on Streaming data 

using apache Spark.  

3. To propose which of the two NoSQL database is most suitable for streaming 

data using Spark. 

The summary of objectives are summaries below 

1. To identify performance metrics for evaluating Cassandra and HBase 

databases on Streaming Data. 

Documents analysis were used to come out with evaluated metrics. Both NoSQL and 

SQL databases were evaluated. NoSQL databases includes Cassandra, HBase and 

MongoDB where by SQL databases includes SQLServer, MySQL and PostgreSQL. 

Selected metrics for evaluation was throughput and average latencies time. 

2. To assessing the performance of Cassandra and HBase on Streaming 

data using apache Spark.  

Different number of iteration were used to evaluate the databases. Throughput and 

average latencies for both Cassandra and HBase were recorded and analyzed. A 
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trigger time was set to 5 seconds, 10 seconds, 5 minutes and 10 minutes. By average 

Cassandra was observed to have high performance on writing operation compared to 

HBase. Apache Spark Streaming was used as platform for evaluation while the 

Twitter Streaming API used as ingestion tool. 

3.To propose which of the two NoSQL database is most suitable for 

streaming data using Spark 

Apache Cassandra was found to be best on handling Streaming data using Apache 

Spark, it found to have the average of 69.14% better throughput compare to 30.399% 

that of HBase in all test performed in this dissertation. As the streaming data 

increase, throughput was found to increase while decreasing in average latencies 

time by 1.07%. For the case of continuous flowing of data and real-time analysis, 

Researcher suggest the use of Apache Cassandra. 

5.2 Conclusions 

Researcher sought that the choice of Databases to be used depend on the needs of the 

user. Studies has been conducted to compare databases with various opinion, reasons 

and needs. A study conducted by (Li & Manoharan, 2013) was about finding 

performance comparison between SQL and NoSQL. (Li & Manoharan, 2013) 

concluded that not in all cases NoSQL databases perform better than SQL in terms of 

read, write and delete operations. 

 The evaluation of  NoSQL database has been conducted by (Ayush, 2014) by 

integrating with Hadoop as analytics tool. The study (Ayush, 2014) found Hadoop-

MongoDB was not efficient in terms of read while Hadoop-Cassandra was more 

stable in write operation, the only limitation to them was Hadoop not to be designed 
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for analytics. According to (Sergey Bushik, 2012) found that Cassandra write 

operation was good in write operation when compared to HBase on processing batch  

data.  

The findings in this study is much like that of  (Ayush, 2014; Sergey Bushik, 2012) 

findings on the comparison of NoSQL databases, the only difference is that, this 

study was dealing with spark streaming data. Researcher chose Apache Spark as the 

framework to be on top to evaluate both Cassandra and HBase databases, because of 

its capability on handling Streaming Data. For the best comparison, researcher 

thought that common factors must be considered when you evaluate databases. In 

this study, only NoSQL database from column-family are taken. 

Within the experiment, Researcher have managed to use Twitter Streaming API and 

constructed a dataset which receive tweets from twitter social network. Researcher 

went through several studies included literature review to accomplish objective (1) 

while chapter (3) and (4) used for the rest of objectives, therefore the main objective 

of this study can be considered accomplished. 

After experiment, results show that Spark-Cassandra performed best when it comes 

write operations because as the streaming workload increase, its average latencies 

time was continuing to be minimal. NoSQL databases are considered to be fast, but 

Spark-Cassandra was not efficient in read streaming data operation. Spark-HBase did 

well when it comes to read operation as the workload increase. Therefore, suggest 

the use of Apache Cassandra on handling Streaming data is being suggested when 

apache Spark is used as analytic platform.  
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5.3 Future Work 

Much work could be done on this experiment but due to time and financial 

constraints limitation, only few experiments were performed. The test was conducted 

for only 20 successively days and provided the interesting results on database arena, 

but much more work can be done to further study. 

Other researcher can continue to do this experiment by involve other NoSQL 

Databases from Document, Key-Value and Graph database as this study deal only 

with Column-family database category. Also, the study can go further by evaluating 

NoSQL using Apache Storm as data link layer for streaming and real-time data, 

Flume or Kafka as data ingestion tool.  This analysis can also be done by comparing 

the data partitioning capability of Spark-Cassandra and Spark-HBase in 

heterogeneous network when handling streaming data from different sources. 
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